Skip to main content
Log in

Discrete Gaussian measures and new bounds of the smoothing parameter for lattices

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that \(\varepsilon\) is suitably small, we obtain two estimations of the smoothing parameter:

  1. 1.
    $$\begin{aligned} \displaystyle \eta _{\varepsilon }({{\mathbb {Z}}}) \le \sqrt{\frac{\ln \big (\frac{\varepsilon }{44}+\frac{2}{\varepsilon }\big )}{\pi }}. \end{aligned}$$

    This is a practically useful case. For this case, our upper bound is very close to the exact value of \(\eta _{\varepsilon }({{\mathbb {Z}}})\) in that \(\sqrt{\frac{\ln \big (\frac{\varepsilon }{44}+\frac{2}{\varepsilon }\big )}{\pi }}-\eta _{\varepsilon }({{\mathbb {Z}}})\le \frac{\varepsilon ^2}{552}\).

  2. 2.

    For a lattice \({{{\mathcal {L}}}}\subset {{\mathbb {R}}}^n\) of dimension n,

    $$\begin{aligned} \displaystyle \eta _{\varepsilon }({{{\mathcal {L}}}}) \le \sqrt{\frac{\ln \big (n-1+\frac{2n}{\varepsilon }\big )}{\pi }}\tilde{bl}({{{\mathcal {L}}}}). \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. This means that f and all its (partial) derivatives \(D^{\beta }f\) are rapidly decreasing in the sense that \(\sup _{{\mathbf {x}}\in {{\mathbb {R}}}^n} |{\mathbf {x}}^{\alpha }D^{\beta }f({\mathbf {x}})|<\infty\) for every \(\alpha , \beta \in {{\mathbb {N}}}^n\). Such a function is said to be in the Schwartz space.

References

  1. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen 296(4), 625–635 (1993)

    Article  MathSciNet  Google Scholar 

  2. Banaszczyk, W.: Inequalites for convex bodies and polar reciprocal lattices in \({\mathbb{R}}^n\). Discrete Comput. Geom. 13, 217–231 (1995)

    Article  MathSciNet  Google Scholar 

  3. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in \({\mathbb{R}}^n\) II: application of k-convexity. Discrete Comput. Geom. 16, 305–311 (1996)

    Article  MathSciNet  Google Scholar 

  4. Cai, J.: A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor. Discrete Appl. Math. 126(1), 9–31 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chung, K., Dadush, D., Liu, F., Peikert, C.: On the Lattice Smoothing Parameter Problem. In: IEEE Conference on Computational Complexity, pp. 230–241 (2013)

  6. Donoho, D., Stark, P.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  7. Gentry, C., Peikert, C., Vaikuntanathan, V.: How to use a short basis: trapdoors for hard lattices and wew cryptographic constructions, STOC, pp. 197–206. (2008) (full version: https://eprint.iacr.org/2007/432.pdf)

  8. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. Kluwer Academic Publishers, Berlin (2002)

    Book  Google Scholar 

  9. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  10. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic, constant-time. Proc. CRYPTO 2017, 455–485 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Peikert, C.: Limits on the hardness of lattice problems in \(\ell _p\)-norms. In: IEEE Conference on Computational Complexity, pp 333–346 (2007)

  12. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. Proc. CRYPTO 2010, 80–97 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Pöppelmann, T., Ducas, L.: Güneysu T, pp. 353–370. Enhanced lattice-based signatures on reconfigurable hardware. In: International Workshop on Cryptographic Hardware and Embedded Systems (2014)

  14. Serre, J-P.: A Course in Arithmetic, GTM 7, Spring (1977)

  15. Stein, E., Shakarchi, R.: Fourier Analysis—An Introduction. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  16. Tao, T: An uncertainty principle for cyclic groups of prime order, http://xxx.arxiv.cornell.edu/pdf/math.CA/0308286

  17. Tian, C., Liu, M., Xu, G.: Measure inequalities and the transference theorem in the geometry of numbers. Proc. Am. Math. Soc. 142, 47–57 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zheng, Z., Wang, X., Xu, G., Zhao, C.: Error Estimation of Practical Convolution Discrete Gaussian Sampling with Rejection Sampling, Science China, [Ser. F], (2019) (to appear). (https://eprint.iacr.org/2018/309)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwu Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Zhao, C. & Xu, G. Discrete Gaussian measures and new bounds of the smoothing parameter for lattices. AAECC 32, 637–650 (2021). https://doi.org/10.1007/s00200-020-00417-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00417-z

Keywords

Mathematics Subject Classification

Navigation