Skip to main content

Advertisement

Log in

Point and interval estimation of quantiles of several exponential populations with a common location under progressive censoring scheme

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We consider the problems of point, and interval estimation of the \(p\textrm{th}\) quantile of the first population when progressive type-II censored samples are available from several exponential populations with a common location, and different scale parameters. First, in the case of point estimation, we derive the maximum likelihood estimator, a modification to it and the uniformly minimum variance unbiased estimator (UMVUE) of the quantile. An estimator dominating the UMVUE is derived. Further, a class of affine equivariant estimators is derived, and an inadmissibility result is proved. Consequently, improved estimators dominating the UMVUE are derived. In the case of interval estimation, several confidence intervals, such as generalized confidence interval, bootstrap confidence interval, and the highest posterior density confidence interval, are obtained for the quantile. The point estimators are compared through the risk values, whereas the interval estimators are compared through coverage probability and average length using a simulation study numerically. The conclusions regarding their performances have been made based on our simulation study. Finally, a real-life data set has been considered for illustrative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albers W, Löhnberg P (1984) An approximate confidence interval for the difference between quantiles in a bio-medical problem. Stat Neerl 38(1):20–22

    Article  Google Scholar 

  • Balakrishnan N, Cramer E (2014) The art of progressive censoring. Statistics for Industry and Technology

  • Balakrishnan N, Hayter A, Liu W, Kiatsupaibul S (2015) Confidence intervals for quantiles of a two-parameter exponential distribution under progressive type-II censoring. Commun Stat Theory Methods 44(14):3001–3010

    Article  MathSciNet  Google Scholar 

  • Brewster J-F, Zidek J (1974) Improving on equivariant estimators. Ann Stat 2(1):21–38

    Article  MathSciNet  Google Scholar 

  • Chen M-H, Shao Q-M (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8(1):69–92

    Article  MathSciNet  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. Am Stat 49(4):327–335

    Article  Google Scholar 

  • Cox T, Jaber K (1985) Testing the equality of two normal percentiles. Commun Stat Simul Comput 14(2):345–356

    Article  Google Scholar 

  • Ghosh M, Razmpour A (1984) Estimation of the common location parameter of several exponentials. Sankhyā Indian J Stat Ser A 46:383–394

    MathSciNet  Google Scholar 

  • Hsieh H (1986) An exact test for comparing location parameters of \(k\) exponential distributions with unequal scales based on type-II censored data. Technometrics 28(2):157–164

    MathSciNet  Google Scholar 

  • Hu J, Zhuang Y, Goldiner C (2021) Fixed-accuracy confidence interval estimation of \({P} ({X}< {Y})\) under a geometric-exponential model. Jpn J Stat Data Sci 4(2):1079–1104

    Article  MathSciNet  Google Scholar 

  • Huang L-F, Johnson RA (2006) Confidence regions for the ratio of percentiles. Stat Probab Lett 76(4):384–392

    Article  MathSciNet  Google Scholar 

  • Jana N, Kumar S, Chatterjee K (2016) Bayes estimation for exponential distributions with common location parameter and applications to multi-state reliability models. J Appl Stat 43(15):2697–2712

    Article  MathSciNet  Google Scholar 

  • Jena AK, Tripathy MR (2018) Estimating quantiles of two exponential populations with a common location parameter using censored samples. J Stat Theory Appl 17(1):136–145

    Article  MathSciNet  Google Scholar 

  • Khatun H, Tripathy MR, Pal N (2020) Hypothesis testing and interval estimation for quantiles of two normal populations with a common mean. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2020.1845735

    Article  Google Scholar 

  • Krishnamoorthy K, Xia Y (2018) Confidence intervals for a two-parameter exponential distribution: one-and two-sample problems. Commun Stat Theory Methods 47(4):935–952

    Article  MathSciNet  Google Scholar 

  • Kumar S, Sharma D (1996) A note on estimating quantiles of exponential populations. Stat Probab Lett 26(2):115–118

    Article  MathSciNet  Google Scholar 

  • Moore DF (2016) Applied survival analysis using R, vol 473. Springer, Berlin

    Book  Google Scholar 

  • Pal N, Sinha B (1990) Estimation of a common location of several exponentials. Stat Risk Model 8(1):27–36

    MathSciNet  Google Scholar 

  • Paolino D (2010) Exact inference for the pth-quantile and the reliability of the two-parameter exponential distribution with singly type-II censoring: a standard approach. Commun Stat Theory Methods 39(14):2561–2572

    Article  MathSciNet  Google Scholar 

  • Razmpour A (1982) Estimation of common location and scale parameters in non-regular cases. Iowa State University

  • Robert CP (2007) The Bayesian choice: from decision-theoretic foundations to computational implementation, vol 2. Springer, Berlin

    Google Scholar 

  • Robert CP, Casella G (1999) Monte Carlo statistical methods, vol 2. Springer, New York

    Book  Google Scholar 

  • Rukhin AL (1986) Admissibility and minimaxity results in the estimation problem of exponential quantiles. Ann Stat 14:220–237

    Article  MathSciNet  Google Scholar 

  • Rukhin AL, Strawderman WE (1982) Estimating a quantile of an exponential distribution. J Am Stat Assoc 77(377):159–162

    Article  MathSciNet  Google Scholar 

  • Saleh AME (1981) Estimating quantiles of exponential distributions. In: Csorgo M, Dawson D, Rao JNK, Saleh AKME (eds) Statistics and related topics. North Holland, Amsterdam, pp 220–237

    Google Scholar 

  • Sharma D, Kumar S (1994) Estimating quantiles of exponential populations. Stat Risk Model 12(4):343–352

    MathSciNet  Google Scholar 

  • Tripathy MR (2018) Improved estimation of common location of two exponential populations with order restricted scale parameters using censored samples. Commun Stat Simul Comput 47(9):2800–2818

    Article  MathSciNet  Google Scholar 

  • Tripathy MR, Kumar S (2017) Some inadmissibility results for estimating quantile vector of several exponential populations with a common location parameter. REVSTAT Stat J 15(3):395–423

    MathSciNet  Google Scholar 

  • Tripathy MR, Kumar S, Misra N (2014) Estimating the common location of two exponential populations under order restricted failure rates. Am J Math Manag Sci 33(2):125–146

    Google Scholar 

  • Tsui K-W, Weerahandi S (1989) Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J Am Stat Assoc 84(406):602–607

    MathSciNet  Google Scholar 

  • Weerahandi S (1993) Generalized confidence intervals. J Am Stat Assoc 88(423):899–906

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the two anonymous reviewers, an associate editor and the editor in chief for their helpful comments and suggestions which have helped significantly to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ranjan Tripathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\({\textbf{Derivation}~\textbf{of}~\textbf{joint}~\textbf{distribution}~\textbf{of}~U_{i}'s;~ i=1,2,\ldots ,k}\)

Denote \(X_{ij:m_{i}:n_{i}} = X_{ij},\) \(W_{i}= \frac{1}{n_{i}}\sum _{i=1}^{m_{i}}(r_{ij}+1)(X_{ij}-X_{i1}),\) and \(U_{i}= W_{i}+(X_{i1}-Z);\) \(i=1,2,\ldots ,k.\) Now

$$\begin{aligned}{} & {} P\Big (U_{1}>u_{1},U_{2}>u_{2},\ldots ,U_{k}>u_{k}\Big )\nonumber \\{} & {} \quad = P\Big (W_{1}+(X_{11}-Z)>u_{1},\ldots ,W_{k}+(X_{k1}-Z)>u_{k}\Big )\nonumber \\{} & {} \quad =\sum _{l=1}^{k}P\Big (W_{1}+(X_{11}-Z)>u_{1},\ldots ,W_{k}+(X_{k1}-Z)>u_{k}, X_{l1}= \min _{\begin{array}{c} 1\le i \le k \end{array}}X_{i1}\Big )\nonumber \\{} & {} \quad =\sum _{\begin{array}{c} l=1 \\ l \ne i \end{array}}^{k}P\Big (W_{1}+(X_{11}-Z)>u_{1},\ldots ,W_{k}+(X_{k1}-Z)>u_{k}| X_{i1}>X_{l1} \Big ) P\Big (X_{i1}> X_{l1}\Big )\nonumber \\{} & {} \quad =\sum _{\begin{array}{c} l=1 \\ l \ne i \end{array}}^{k}P\Big (W_{i}+(X_{i1}-X_{l1})>u_{i}, W_{l}>u_{l}| X_{i1}>X_{l1}\Big ) P\Big (X_{i1}> X_{l1}\Big )\nonumber \\{} & {} \quad =\sum _{\begin{array}{c} l=1 \\ l \ne i \end{array}}^{k}P\Big (W_{i}+(X_{i1}-X_{l1})>u_{i}| X_{i1}>X_{l1}\Big ) P\Big ( W_{l}>u_{l}\Big ) P\Big (X_{i1}> X_{l1} \Big ) \end{aligned}$$
(5.4)

Now, for \(l=1,2,\ldots ,k\)

$$\begin{aligned}{} & {} P\left( X_{i1}> X_{l1}~ \forall ~ i=1, \ldots ,k~(\ne l))=P(X_{i1}-\mu > X_{l1}-\mu ~ \forall ~ i=1, \ldots , k~(\ne l)\right) \nonumber \\{} & {} \quad = \int _{0}^{\infty }\left[ \prod _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\int _{x_{l1}}^{\infty }\frac{n_{i}}{\sigma _{i}}\exp \left( -\frac{n_{i}}{\sigma _{i}}x_{i1}\right) dx_{i1}\right] \frac{n_{l}}{\sigma _{l}}\exp \left( -\frac{n_{l}}{\sigma _{l}}x_{l1}\right) dx_{l1}\nonumber \\{} & {} \quad =\int _{0}^{\infty }\left[ \prod _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\exp \left( -\frac{n_{i}}{\sigma _{i}}x_{l1}\right) \right] \frac{n_{l}}{\sigma _{l}}\exp \left( -\frac{n_{l}}{\sigma _{l}}x_{l1}\right) dx_{l1}\nonumber \\{} & {} \quad =\int _{0}^{\infty }\frac{n_{l}}{\sigma _{l}} \exp \left\{ -\left( \sum _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\frac{n_{i}}{\sigma _{i}}+\frac{n_{l}}{\sigma _{l}}\right) x_{l1}\right\} dx_{l1}\nonumber \\{} & {} \quad =\int _{0}^{\infty }\frac{n_{l}}{\sigma _{l}} \exp \left\{ -\left( \sum _{i=1}^{k}\frac{n_{i}}{\sigma _{i}}\right) x_{l1}\right\} dx_{l1}\nonumber \\{} & {} \quad =\frac{n_{l}}{\sigma _{l}}\left( \sum _{i=1}^{k}\frac{n_{i}}{\sigma _{i}}\right) ^{-1} =\frac{n_{l}}{\sigma _{l}}\sigma ^{-1} \end{aligned}$$
(5.5)

Next consider

$$\begin{aligned}{} & {} P\left( X_{i1}-X_{l1}>u_{i}| X_{i1}>X_{l1}~ \forall ~ i~ (\ne l)\right) =\frac{ P\left( X_{i1}-X_{l1}>u_{i}~ \forall ~ i (\ne l)\right) }{P\left( X_{i1} >X_{l1} ~\forall ~ i~(\ne l)\right) }\nonumber \\{} & {} \quad =\left[ \frac{n_{l}}{\sigma _{l}}\sigma ^{-1}\right] ^{-1}\int _{0}^{\infty }\left[ \prod _{\begin{array}{c} i=1\\ (\ne l) \end{array}}^{k}\int _{u_{i}+x_{l1}}^{\infty }\frac{n_{i}}{\sigma _{i}}\exp \left( -\frac{n_{i}}{\sigma _{i}}x_{i1}\right) dx_{i1}\right] \nonumber \\{} & {} \qquad \times \frac{n_{l}}{\sigma _{l}}\exp \left( -\frac{n_{l}}{\sigma _{l}}x_{l1}\right) dx_{l1}\nonumber \\{} & {} \quad =\sigma \int _{0}^{\infty }\left[ \prod _{\begin{array}{c} i=1\\ (\ne l) \end{array}}^{k}\exp \left( -\frac{n_{i}}{\sigma _{i}}(u_{i}+x_{l1})\right) \right] \exp \left( -\frac{n_{l}}{\sigma _{l}}x_{l1}\right) dx_{l1}\nonumber \\{} & {} \quad =\sigma \exp \left( -\sum _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\frac{n_{i}}{\sigma _{i}}u_{i}\right) \int _{0}^{\infty }\exp \left\{ -\left( \sum _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\frac{n_{i}}{\sigma _{i}}+\frac{n_{l}}{\sigma _{l}}\right) x_{l1}\right\} dx_{l1}\nonumber \\{} & {} \quad =\sigma \exp \left( -\sum _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\frac{n_{i}}{\sigma _{i}}u_{i}\right) \int _{0}^{\infty }\exp \left\{ -\left( \sum _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\frac{n_{i}}{\sigma _{i}}+\frac{n_{l}}{\sigma _{l}}\right) x_{l1}\right\} dx_{l1}\nonumber \\{} & {} \quad =\sigma \exp \left( -\sum _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k}\frac{n_{i}}{\sigma _{i}}u_{i}\right) \left( \sum _{i=1}^{k}\frac{n_{i}}{\sigma _{i}}\right) ^{-1}\nonumber \\{} & {} \quad =\prod _{\begin{array}{c} i=1\\ (\ne l) \end{array}}^{k}\exp \left( -\frac{n_{i}}{\sigma _{i}}u_{i}\right) \end{aligned}$$
(5.6)

This implies, the random variables \((X_{i1}-Z)\) (\(\forall ~ i=1,2,\ldots , k (\ne l)\)) given \(X_{il}>X_{l1}\) are independently distributed as \(Gamma(1, n_{i}/\sigma _{i}).\) Further, it is known that \(\sum _{j=1}^{m_{i}}(r_{ij}+1)(X_{ij}-X_{i1})\) follows \(Gamma(m_{i}-1, 1/\sigma _{i})\) which implies \(W_{i}\) follows \(Gamma(m_{i}-1, n_{i}/\sigma _{i}).\)

The random variables \(W_{i}\) and \((X_{i1}-Z)\) \(\forall ~ i=1,2,\ldots ,k~ (\ne l)\) are independent. Therefore, \(W_{i}+(X_{i1}-Z)\) \(\forall ~ i=1,2,\ldots ,k ~(\ne l)\) independently distributed as \(Gamma(m_{i}, n_{i}/\sigma _{i})\) conditional on \(X_{il}>X_{l1}.\)

Utilizing the equations (5.4)–(5.6) we obtain the joint probability density function of \((U_1, U_2, \ldots , U_k)\) as

$$\begin{aligned} f(u_1,u_2,\ldots ,u_k)= & {} \sum _{l=1}^{k}\left[ \frac{n_{l}}{\sigma _{l}}\sigma ^{-1}\left\{ \prod _{\begin{array}{c} i=1\\ (\ne l) \end{array}}^{k}\frac{\left( \frac{n_{i}}{\sigma _{i}}\right) ^{m_{i}}\exp \left( -\frac{n_{i}}{\sigma _{i}}u_{i}\right) u_{i}^{m_{i}-1}}{\Gamma (m_{i})}\right\} \right. \\{} & {} \left. \frac{\left( \frac{n_{l}}{\sigma _{l}}\right) ^{m_{l}-1}\exp \left( -\frac{n_{l}}{\sigma _{l}}u_{l}\right) u_{l}^{m_{l}-2}}{\Gamma (m_{l}-1)}\right] \nonumber \\= & {} \frac{\prod _{i=1}^{k}n_{i}^{m_{i}}}{\sigma \prod _{i=1}^{k}\sigma _{i}^{m_{i}}}\left[ \sum _{l=1}^{k}\left( \prod _{\begin{array}{c} i=1 \\ i \ne l \end{array}}^{k} \frac{u_{i}^{m_{i}-1}}{\Gamma (m_{i})}\right) \frac{u_{l}^{m_{l}-2}}{\Gamma (m_{l}-1)}\right] \exp \left( -\sum _{i=1}^{k}\frac{n_{i}u_{i}}{\sigma _{i}}\right) . \end{aligned}$$

Proof of Theorem 2.1

It may be noted that the statistics Z and \((U_1, U_2, \ldots , U_k)\) are jointly sufficient using Fisher-Neyman factorization theorem. Further the statistics Z and \((U_1, U_2, \ldots , U_k)\) are independent using Basu’s theorem. To show that the statistics are complete, one need to prove that when \(E_{\mu , \sigma _{1}, \sigma _{2}, \ldots , \sigma _{k}}H(Z, U_1, U_2, U_k)=0\) the it implies \(H(Z, U_1, U_2, \ldots , U_k)=0\) almost everywhere, for all values of the parameters. But,

$$\begin{aligned} E_{\mu ,\sigma _{1},\sigma _{2}, \ldots , \sigma _{k}}H(Z, U_1, U_2, \ldots , U_k)= & {} \int _{0}^{\infty }\int _{0}^{\infty }\ldots \int _{0}^{\infty } \int _{\mu }^{\infty } H(z, u_{1}, u_{2}, \ldots , u_k) \sigma \nonumber \\{} & {} \exp \left( -\sigma (z-\mu )\right) \nonumber \\{} & {} \times f(u_{1}, u_{2}, \ldots , u_k)~ dz du_{1} du_{2}\ldots du_{k}=0.\nonumber \\ \end{aligned}$$
(5.7)

Differentiating the above equation (5.7) with respect to \(\mu ,\) under the integral sign, one gets

$$\begin{aligned}{} & {} \int _{0}^{\infty }\ldots \int _{0}^{\infty } \int _{0}^{\infty } H(\mu , u_{1}, u_{2}, \ldots , u_k) f(Z, u_{1}, u_{2}, \ldots , u_k) du_{1}du_{2} \ldots du_k= 0,\\{} & {} \quad \text{ almost } \text{ everywhere }. \end{aligned}$$

Next, using the arguments given in Theorem 2.5.1 of Razmpour (1982), it is easy to show that the family of distributions generated by the statistics \((Z, U_1, U_2, \ldots , U_k)\) is complete. Thus the joint statistics \((Z, U_1, U_2, \ldots , U_k)\) is complete and sufficient for \((\mu , \sigma _{1}, \sigma _{2}, \ldots , \sigma _{k}).\)

To derive the UMVUEs of \(\mu \) and \(\sigma _{i}\)s, we proceed as follows. Consider

(5.8)

Now substituting this in \(E(\hat{\mu }_{MV})\) one gets the UMVUE of \(\mu .\) In a similar manner one can derive the UMVUE of \(\sigma _{i};\) \(i=1,2,\ldots ,k.\) \(\square \)

\({\textbf{Derivation}~\textbf{of}~\textbf{first}~\textbf{and}~\textbf{second}~\textbf{moments}~\textbf{of}~ U_{j}{} \textbf{s}:}\)

The marginal density of \(U_{j}\) is given by

(5.9)

The first moment of \(U_{j}\) is obtained as

$$\begin{aligned} E(U_{j})= & {} \int _{0}^{\infty }u_{j} f_{U_{j}}(u_{j}) du_{j}\nonumber \\= & {} \int _{0}^{\infty } \frac{n_{j}^{m_{j}}}{\sigma \sigma _{j}^{m_{j}}}\left[ \frac{u_{j}^{m_{j}}}{\Gamma (m_{j})}\left( \sigma -\frac{n_{j}}{\sigma _{j}}\right) +\frac{u_{j}^{m_{j}-1}}{\Gamma (m_{j}-1)}\right] \exp \left( -\frac{n_{j}u_{j}}{\sigma _{j}}\right) du_{j}\nonumber \\= & {} \frac{n_{j}^{m_{j}}}{\sigma \sigma _{j}^{m_{j}}} \left[ \frac{\Gamma (m_{j}+1)\sigma _{j}^{m_{j}+1}}{\Gamma (m_{j})n_{j}^{m_{j}+1}}\left( \sigma -\frac{n_{j}}{\sigma _{j}}\right) +\frac{\Gamma (m_{j})\sigma _{j}^{m_{j}}}{\Gamma (m_{j}-1)n_{j}^{m_{j}}}\right] \nonumber \\= & {} \frac{m_{j}\sigma _{j}}{n_{j}}-\frac{1}{\sigma } \end{aligned}$$
(5.10)

In a similar manner, the second moment of \(U_{j}\) is obtained as

$$\begin{aligned} E(U_{j}^2)= & {} \int _{0}^{\infty }u_{j}^2 f_{U_{j}}(u_{j}) du_{j}\nonumber \\= & {} \int _{0}^{\infty } \frac{n_{j}^{m_{j}}}{\sigma \sigma _{j}^{m_{j}}}\left[ \frac{u_{j}^{m_{j}+1}}{\Gamma (m_{j})}\left( \sigma -\frac{n_{j}}{\sigma _{j}}\right) +\frac{u_{j}^{m_{j}}}{\Gamma (m_{j}-1)}\right] \exp \left( -\frac{n_{j}u_{j}}{\sigma _{j}}\right) du_{j}\nonumber \\= & {} \frac{n_{j}^{m_{j}}}{\sigma \sigma _{j}^{m_{j}}} \left[ \frac{\Gamma (m_{j}+2)\sigma _{j}^{m_{j}+1}}{\Gamma (m_{j})n_{j}^{m_{j}+1}}\left( \sigma -\frac{n_{j}}{\sigma _{j}}\right) +\frac{\Gamma (m_{j}+1)\sigma _{j}^{m_{j}}}{\Gamma (m_{j}-1)n_{j}^{m_{j}}}\right] \nonumber \\= & {} \frac{\sigma _{j}}{n_{j}}\left( m_{j}(m_{j}+1)\frac{\sigma _{j}}{n_{j}}-\frac{2 m_{j}}{\sigma }\right) . \end{aligned}$$
(5.11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatun, H., Tripathy, M.R. Point and interval estimation of quantiles of several exponential populations with a common location under progressive censoring scheme. Comput Stat 39, 2217–2257 (2024). https://doi.org/10.1007/s00180-023-01410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01410-z

Keywords

Navigation