Skip to main content
Log in

Linear instability in the wake of an elliptic wing

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of \(Re_{c}=1750\) and two angles of attack, \(\mathrm{{AoA}}=0^\circ \) and \(5^\circ \). Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashworth, R., Mughal, S.: Modeling three dimensional effects on cross flow instability from leading edge dimples. Procedia IUTAM 14, 201–210 (2015)

    Article  Google Scholar 

  2. Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  3. Batchelor, G.K.: Axial flow in trailing line vortices. J. Fluid Mech. 20(4), 645–658 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benton, S.I., Bons, J.P.: Three-dimensional instabilities in vortex/wall interactions: linear stability and flow control. In: 52nd Aerospace Sciences Meeting. AIAA Paper 2014-1267, 13–16 January 2014, National Harbor, Maryland, USA (2014)

  5. Bridges, T., Morris, P.: Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437–460 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brion, V., Sipp, D., Jacquin, L.: Optimal amplification of the crow instability. Phys. Fluids 19, 111703 (2007)

    Article  MATH  Google Scholar 

  7. Broadhurst, M.S., Sherwin, S.J.: The parabolised stability equations for 3D-flows: implementation and numerical stability. Appl. Numer. Math. 58(7), 1017–1029 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Broadhurst, M., Theofilis, V., Sherwin, S.J.: Spectral element stability analysis of vortical flows. In: R. Govindarajan (ed.) 6th IUTAM Symposium on Laminar-Turbulent Transition, pp. 153–158. Springer, 13–17 December 2004, Bangalore, India (2006)

  9. Crouch, J.D.: Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311–330 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA J. 8, 2172–2179 (1970)

    Article  Google Scholar 

  11. De Tullio, N., Paredes, P., Sandham, N.D., Theofilis, V.: Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duck, P.W.: On the downstream development and breakup of systems of trailing-line vortices. Theor. Comp. Fluid Dyn. 25(1), 43–52 (2011)

    Article  MATH  Google Scholar 

  13. Fabre, D., Jacquin, L.: Stability of a four-vortex aircraft wake model. Phys. Fluids 12(10), 2438–2443 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000: http://nek5000.mcs.anl.gov (2008)

  15. Galionis, I., Hall, P.: Spatial stability of the incompressible corner flow. Theor. Comp. Fluid Dyn. 19, 77–113 (2005)

    Article  MATH  Google Scholar 

  16. Galionis, I., Hall, P.: Stability of the flow in a slowly diverging rectangular duct. J. Fluid Mech. 555, 43–58 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gallaire, F., Chomaz, J.M.: Three-dimensional instability of isolated vortices. Phys. Fluids 15(8), 2113–2126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gonzalez, L.M., Gomez-Blanco, R., Theofilis, V.: Eigenmodes of a counter-rotating vortex dipole. AIAA J. 46(11), 2796–2805 (2008)

    Article  Google Scholar 

  19. González, L.M., Theofilis, V., Meseguer, F.: Galerkin methods for biglobal linear instability analysis of vortical flows. In: Lecture Notes in Computational Science and Engineering. ICOSAHOM 09, 22-26 June, Trondheim, Norway. Springer (2009)

  20. Heaton, C.J., Nichols, J.W., Schmid, P.J.: Global linear stability of the non-parallel batchelor vortex. J. Fluid Mech. 629, 139–160 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hein, S., Theofilis, V.: On instability characteristics of isolated vortices and models of trailing-vortex systems. Comp. & Fluids 33(5–6), 741–753 (2004)

    Article  MATH  Google Scholar 

  22. Herbert, T.: Parabolized stability equations. AGARD Report No. 793. Special Course on Progress in Transition Modelling. pp. 4(1)–4(34) (1994)

  23. Herbert, T.: Parabolized stability equations. Ann. Rev. Fluid Mech. 29, 245–283 (1997)

    Article  MathSciNet  Google Scholar 

  24. Higuchi, H., Quadrelli, J.C., Farell, C.: Vortex roll-up from an elliptic wing at moderately low reynolds numbers. AIAA J. 25(12), 1537–1542 (1987)

    Article  Google Scholar 

  25. Jacquin, L., Fabre, D., Sipp, D., Theofilis, V., Vollmers, H.: Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7(8), 577–593 (2003)

    Article  Google Scholar 

  26. Jiménez, J.: Stability of a pair of co-rotating vortices. Phys. Fluids 18(11), 1580–1581 (1970)

    Article  MATH  Google Scholar 

  27. Kármán, T.V.: Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachr. Ges. Wissenschaft. Göttingen, pp. 509–517 (1911)

  28. Kármán, T.V.: Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachr. Ges. Wissenschaft. Göttingen, pp. 547–556 (1912)

  29. Lacaze, L., Ryan, K., Dizes, S.L.: Elliptic instability in a strained batchelor vortex. J. Fluid Mech. 577, 341–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Leonard, A.: Vortex methods for flow simulation. J. Comp. Phys. 37, 289–335 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lessen, M., Paillet, F.: The stability of a trailing line vortex. Part 2. Viscous theory. J. Fluid Mech. 65, 769–779 (1974)

    Article  MATH  Google Scholar 

  32. Lessen, M., Singh, P.J., Paillet, F.: The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753–763 (1974)

    Article  MATH  Google Scholar 

  33. Leweke, T., Williamson, C.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85–119 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, F., Malik, M.: Mathematical nature of parabolized stability equations. In: Kobayashi, R. (ed.) Laminar-Turbulent Transition, pp. 205–212. Springer, Heidelberg (1994)

    Google Scholar 

  35. Li, F., Malik, M.: On the nature of the PSE approximation. Theor. Comput. Fluid Dyn. 8, 253–273 (1996)

    Article  MATH  Google Scholar 

  36. Li, F., Malik, M.: Spectral analysis of parabolized stability equations. Compt. Fluids 26(3), 279–297 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Martín, J., Paredes, P.: Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices. Theor. Comp. Fluid Dyn. (in review) (2016)

  38. Mayer, E.W., Powell, K.G.: Viscous and inviscid instabilities of a trailing vortex. J. Fluid Mech. 245, 91–114 (1992)

    Article  MATH  Google Scholar 

  39. Meunier, P., Leweke, T.: Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 125–159 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Michalke, A.: On spatially growing disturbances in an inviscid shear-layer. J. Fluid Mech. 23(3), 521–544 (1965)

    Article  MathSciNet  Google Scholar 

  41. Paredes, P.: Advances in global instability computations: from incompressible to hypersonic flow. Phd thesis, Technical University of Madrid (2014)

  42. Paredes, P., Hermanns, M., Le Clainche, S., Theofilis, V.: Order \(10^4\) speedup in global linear instability analysis using matrix formation. Comput. Meth. Appl. Mech. Eng. 253, 287–304 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Paredes, P., Rodríguez, D., Theofilis, V.: Three-dimensional solutions of trailing-vortex flows using parabolized equations. AIAA J. 51(12), 2763–2770 (2013)

    Article  Google Scholar 

  44. Paredes, P., Theofilis, V., Rodríguez, D., Tendero, J.A.: The PSE-3D instability analysis methodology for flows depending strongly on two and weakly on the third spatial dimension. In: 6th AIAA Theoretical Fluid Mechanics Conference. AIAA Paper 2011-3752, 27–30 June 2011, Honolulu, Hawaii, USA (2011)

  45. Schlichting, H.: Boundary Layer Theory. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  46. Tendero, J.A., Paredes, P., Roura, M., Govindarajan, R., Theofilis, V.: BiGlobal and point vortex methods for the instability analysis of wakes. In: 31st AIAA Applied Aerodynamics Conference. AIAA Paper 2013-2820, June 24–27, 2013, San Diego, CA (2013)

  47. Tendero, J.A., Theofilis, V., Roura, M., Govindarajan, R.: On vortex filament methods for linear instability analysis of aircraft wakes. Aerosp. Sci. Technol. 44, 51–68 (2015)

    Article  Google Scholar 

  48. Theofilis, V.: Spatial stability of incompressible attachment line flow. Theor. Comput. Fluid Dyn. 7, 159–171 (1995)

    Article  MATH  Google Scholar 

  49. Theofilis, V.: Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Thomas, P.J., Auerbach, D.: The observation of the simultaneous development of a long- and a short-wave instability mode on a vortex pair. J. Fluid Mech. 265, 289–302 (1994)

    Article  Google Scholar 

  51. Xue, D., Pan, C., Wang, J., Borodulin, V.I., Kachanov, Y.S.: Determining time-scale of laminar wing-tip vortex instability by visualization. In: Proceedings on 13th Asian Symposium on Visualization, Khristianovich Institute of Theoretical and Applied Mechanics. Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia, June 22–26 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Additional information

Communicated by Dr. Theofilis and Dr. Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 17412 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Tendero, J.Á., Paredes, P. et al. Linear instability in the wake of an elliptic wing. Theor. Comput. Fluid Dyn. 31, 483–504 (2017). https://doi.org/10.1007/s00162-016-0400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0400-2

Keywords

Navigation