Skip to main content
Log in

Galilean relativistic fluid mechanics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass–momentum–energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier–Navier–Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H.: Raum-Zeit-Matterie. Julius Springer, Berlin (1918) (in German, English translation: Methuen and Co., Ltd., London, 1922)

  2. Havas, P.: Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity. Rev. Mod. Phys. 36, 938–965 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Friedman, M.: Foundations of Space–Time Theories (Relativistic Physics and Philosophy of Science). Princeton University Press, Princeton (1983)

    Google Scholar 

  4. Matolcsi, T.: A Concept of Mathematical Physics: Models in Mechanics. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest (1986)

    MATH  Google Scholar 

  5. Matolcsi, T.: Spacetime Without Reference Frames. Akadémiai Kiadó Publishing House of the Hungarian Academy of Sciences), Budapest (1993)

    MATH  Google Scholar 

  6. Fülöp, T.: Space is not absolute—spacetime as the consequence of the Galilean relativity principle. In: Fülöp, T., (ed.) Új eredmények a kontinuumfizikában, volume 8 of Mérnökgeológia-Kőzetmechanika Kiskönyvtár, Chapter 1, pp. 11–35. Műegyetemi Kiadó, Budapest (2008) (in Hungarian)

  7. Matolcsi, T., Ván, P.: Absolute time derivatives. J. Math. Phys. 48, 053507–053519 (2007). arXiv:math-ph/0608065

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125(6), 2163 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Barenblatt, G.I.: Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  10. László, A.: Conformal invariance without referring to metric. (2014) arXiv:1406.5888

  11. Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226, (1958/59)

  12. Noll, W.: Space–time structures in classical mechanics. In: The Foundations of Mechanics and Thermodynamics (selected papers by Walter Noll), pp. 204–210. Springer, Berlin (1974). Originally: pp 28–34, Delaware Seminar in the Foundations of Physics, Berlin (1967)

  13. Noll, W.: Five Contributions to Natural Philosophy (2004). www.math.cmu.edu/~wn0g/noll/FC

  14. Noll, W.: A frame free formulation of elasticity. J. Elast. 83, 291–307 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Noll, W., Seguin, B.: Basic concepts of thermomechanics. J. Elast. 101, 121–151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin, 1965. Handbuch der Physik, III/3

  17. Matolcsi, T., Ván, P.: Can material time derivative be objective? Phys. Lett. A 353, 109–112 (2006). arXiv:math-ph/0510037

    Article  ADS  Google Scholar 

  18. Fülöp, T.: A new approach to the kinematics of continua. In: Fülöp T., (eds) Új eredmények a kontinuumfizikában, Mérnökgeológia-Kőzetmechanika Kiskönyvtár, Chapter 3, vol. 8, pp. 55–99. Műegyetemi Kiadó, Budapest (2008) (in Hungarian)

  19. Fülöp, T., Ván, P.: Kinematic quantities of finite elastic and plastic deformations. Math. Methods Appl. Sci. 35, 1825–1841 (2012). arXiv:1007.2892v1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fülöp, T.: Objective Thermomechanics (2015). arXiv:1510.08038

  21. Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73(4), 373–382 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bruhns, O.T., Xiao, H., Mayers, A.: Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207–2226 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain-energy density to model the large deformations of slightly compressible solid rubbers. Mech. Mater. 79, 943–950 (2009)

    Article  Google Scholar 

  24. Neff, P., Eidel, B., Osterbrink, F., Martin, R.: A Riemannian approach to strain measures in nonlinear elasticity. C. R. Acad. Sci. 342, 254–257 (2014)

    Google Scholar 

  25. Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity. J. Elast. 1–92 (2014). arXiv:1403.4675

  26. Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bull. Int. Acad. Sci. Crac. 124, 594–614 (1903)

    MATH  Google Scholar 

  27. Jaumann, G.: Geschlossenes System physikalischer und chemischer Differentialgesetze (I. Mitteilung). Sitzungsberichte der kaiserliche Akademie der Wissenschaften in Wien CXVII(Mathematisch IIa), 385–528 (1911)

    MATH  Google Scholar 

  28. Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200, 523–541 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Müller, I.: On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal. 45, 241–250 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Edelen, D.G.B., McLennan, J.A.: Material indifference: a principle or a convenience. Int. J. Eng. Sci. 11, 813–817 (1973)

    Article  MATH  Google Scholar 

  31. Bampi, F., Morro, A.: Objectivity and objective time derivatives in continuum physics. Found. Phys. 10(11/12), 905–920 (1980)

    Article  ADS  Google Scholar 

  32. Murdoch, A.I.: On material frame-indifference, intrinsic spin and certain constitutive relations motivated by the kinetic theory of gases. Arch. Ration. Mech. Anal. 83, 185–194 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ryskin, G.: Misconception which led to the "material frame indifference" controversy. Phys. Rev. E 32(2), 1239–1240 (1985)

    Article  ADS  Google Scholar 

  34. Ryskin, G.: Reply to “comments on the ‘material frame indifference’ controversy". Phys. Rev. E 36(9), 4526 (1987)

    Article  ADS  Google Scholar 

  35. Speziale, C.G.: Comments on the “material frame indifference" controversy. Phys. Rev. E 36(9), 4522–4525 (1987)

    Article  ADS  Google Scholar 

  36. Speziale, C.G.: A review of material frame-indifference in mechanics. Appl. Mech. Rev. 51(8), 489–504 (1998)

    Article  ADS  Google Scholar 

  37. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53, 653–675 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Massoudi, M.: On the importance of material frame-indifference and lift forces in multiphase flow. Chem. Eng. Sci. 57, 3687–3701 (2002)

    Article  Google Scholar 

  40. Murdoch, A.I.: Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Liu, I.-S.: On Euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 16, 177–183 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Murdoch, A.I.: On criticism of the nature of objectivity in classical continuum physics. Contin. Mech. Thermodyn. 17, 135–148 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Liu, I.-S.: Further remarks on Euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 17, 125–133 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Yavari, A., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 042903 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Frewer, M.I.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202(1–4), 213–246 (2009)

    Article  MATH  Google Scholar 

  46. Mariano, P.M.: SO(3) invariance and covariance in mixtures of simple bodies. Int. J. Non-Linear Mech. 40, 1023–1030 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Mariano, P.M.: Geometry and balance of hyperstresses. Rendiconti dei Lincei Matematica Applicata 18, 311–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mariano, P.M.: Cracks in complex bodies: covariance of tip balances. J. Nonlinear Sci. 18, 99–141 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Muschik, W.: Objectivity and frame indifference, revisited. Arch. Mech. 50, 541–547 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Muschik, W., Restuccia, L.: Changing the observer and moving materials in continuum physics: objectivity and frame-indifference. Technische Mechanik 22(3), 152–160 (2002)

    Google Scholar 

  51. Muschik, W., Restuccia, L.: Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example. Arch. Appl. Mech. 78(11), 837–854 (2008)

    Article  ADS  MATH  Google Scholar 

  52. Muschik, W.: Is the heat flux density really non-objective? a glance back, 40 years later. Contin. Mech. Thermodyn. 24(24), 333–337 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  53. Matolcsi, T., Gruber, T.: Spacetime without reference frames: An application to the kinetic theory. Int. J. Theor. Phys. 35(7), 1523–1539 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  54. Brenner, H.: Kinematics of volume transport. Phys. A 349, 11–59 (2005)

    Article  Google Scholar 

  55. Brenner, H.: Navier–Stokes revisited. Phys. A 349, 60–132 (2005)

    Article  MathSciNet  Google Scholar 

  56. Brenner, H.: Fluid mechanics revisited. Phys. A 370(2), 190–224 (2006)

    Article  Google Scholar 

  57. Brenner, H.: Bi-velocity hydrodynamics: single-component fluids. Int. J. Eng. Sci. 47(9), 930–958 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Brenner, H.: Diffuse volume transport in fluids. Phys. A 389(19), 4026–4045 (2010)

    Article  Google Scholar 

  59. Brenner, H.: Beyond Navier–Stokes. Int. J. Eng. Sci. 54, 67–98 (2012)

    Article  MathSciNet  Google Scholar 

  60. Brenner, H.: Steady-state heat conduction in a gas undergoing rigid-body rotation. Comparison of Navier–Stokes–Fourier and bivelocity paradigms. Int. J. Eng. Sci. 70, 29–45 (2013)

    Article  MathSciNet  Google Scholar 

  61. Brenner, H.: Conduction-only transport phenomena in compressible bivelocity fluids: diffuse interfaces and Korteweg stresses. Phys. Rev. E 89(4), 043020 (2014)

    Article  ADS  Google Scholar 

  62. Bedeaux, D., Kjelstrup, S., Öttinger, H.C.: On a possible difference between the barycentric velocity and the velocity that gives translational momentum in fluids. Phys. A 371(2), 177–187 (2006)

    Article  Google Scholar 

  63. Öttinger, H.C.: Weakly and strongly consistent formulations of irreversible processes. Phys. Rev. Lett. 99(13), 130602(4) (2007)

    Article  Google Scholar 

  64. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, London (1959)

    MATH  Google Scholar 

  65. Dzyaloshinskii, I.E., Volovick, G.E.: Poisson brackets in condensed matter physics. Ann. Phys. 125(1), 67–97 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  66. Klimontovich, Y.L.: On the need for and the possibility of a unified description of kinetic and hydrodynamic processes. Theor. Math. Phys. 92(2), 909–921 (1992)

    Article  MATH  Google Scholar 

  67. Ván, P.: Generic stability of dissipative non-relativistic and relativistic fluids. J. Stat. Mech. Theory Exp. (2009). arXiv:0811.0257

  68. Ván, P., Biró, T.: Dissipation flow-frames: particle, energy, thermometer. In: Pilotelli, M., Beretta, G. P. (eds) Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, pp. 546–551 (2013). Cartolibreria SNOOPY. ISBN 978-88-89252-22-2, arXiv:1305.3190

  69. Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. Contin. Mech. Thermodyn. 1(1), 3–20 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, vol 37, 2nd edn. Springer Tracts in Natural Philosophy. Springer, New York (1998)

  71. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  72. Bíró, T.S., Ván, P.: About the temperature of moving bodies. EPL 89, 30001 (2010). arXiv:0905.1650v1

    Article  ADS  Google Scholar 

  73. Kostädt, P., Liu, M.: Three ignored densities, frame-independent thermodynamics, and broken Galilean symmetry. Phys. Rev. E 58, 5535 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  74. Horváth, R.: A new interpretation of the kinetic energy concept. KLTE MFK Tudományos Közleményei 23, 29–33 (1997). (in Hungarian)

    Google Scholar 

  75. Prix, R.: Variational description of multifluid hydrodynamics: uncharged fluids. Phys. Rev. D 69(4), 043001 (2004)

    Article  ADS  Google Scholar 

  76. Lange, L.: On the Law of Inertia. Eur. Phys. J. H 39(2), 251–262 (2014)

    Article  Google Scholar 

  77. Pfister, H.: Ludwig Lange on the law of inertia. Eur. Phys. J. H 39(2), 245–250 (2014)

    Article  Google Scholar 

  78. Penrose, R.: The Road to Reality. Jonathan Cape, London (2004)

    Google Scholar 

  79. Liboff, R.L.: Kinetic Theory (Classical, Quantum, and Relativistic Descriptions). Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  80. Matolcsi, T.: On material frame-indifference. Arch. Ration. Mech. Anal. 91(2), 99–118 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  81. Gyarmati, I.: Non-equilibrium thermodynamics. Field theory and variational principles. Springer, Berlin (1970)

    Book  Google Scholar 

  82. Gallavotti, G.: Foundations of Fluid Dynamics, vol. 172. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  83. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer Verlag, Berlin (1992). 3rd, revised edition, 2001

  84. Matolcsi, T.: Ordinary Thermodynamics. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest (2005)

    MATH  Google Scholar 

  85. Truesdell, C., Bharatha, S.: Classical Thermodynamics as a Theory of Heat Engines. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  86. Ván, P.: Kinetic equilibrium and relativistic thermodynamics. In: EPJ WEB of Conferences, vol. 13, p 07004 (2011). arXiv:1102.0323

  87. Ván, P., Biró, T.S.: First order and generic stable relativistic dissipative hydrodynamics. Phys. Lett. B 709(1–2), 106–110 (2012). arXiv:1109.0985 [nucl-th]

  88. Ván, P., Biró, T.S.: Thermodynamics and flow-frames for dissipative relativistic fluids. In: Chacón-Acosta, G., Garcí-Perciante, A.L., Sandoval-Villalbazo, A., (eds.) Plasma physics and relativistic fluids, vol. 1578. AIP Conference Proceedings, pp. 114–121, 2014. Proceedings of the V Leopoldo García–Colín Mexican Meeting on Mathematical and Experimental Physics, El Colegio Nacional, September 9–13, 2013. Mexico City. arXiv:1310.5976

  89. Müller, I.: Thermodynamics. Pitman, Toronto (1985)

    MATH  Google Scholar 

  90. Matolcsi, T.: Models of Spacetime. ETTE (2015) (in Hungarian)

  91. Öttinger, H.C., Struchtrup, H., Liu, M.: Inconsistency of a dissipative contribution to the mass flux in hydrodynamics. Phys. Rev. E 80(5), 056303 (2009)

    Article  ADS  Google Scholar 

  92. Ván, P., Pavelka, M., Grmela, M.: Extra mass flux in fluid mechanics (2015) arXiv:1510.03900

  93. Prigogine, I., Stengers, I.: La nouvelle alliance: métamorphose de la science. Gallimard, Paris (1986)

    Google Scholar 

  94. Matolcsi, T.: Dynamical laws in thermodynamics. Phys. Essays 5(3), 320–327 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  95. Ván, P.: Asymptotic stability and the second law in extended irreversible thermodynamics. In: Rionero, S., Ruggeri, T. (eds.) 7th Conference on Waves and Stability in Continuous Media, Bologna, Italy. October 4–9. 1993, volume 23 of Series on Advances in Mathematics for Applied Sciences, pp. 384–389, Singapore-New Jersey-London-Hong Kong, October 1994. Quaderno CNR - Gruppo nazionale per la Fisica Matematica, World Scientific

  96. Ván, P.: Other dynamic laws in thermodynamics. Phys. Essays 8(4), 457–465 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  97. Ván, P., Bíró, T.S.: Relativistic hydrodynamics—causality and stability. Eur. Phys. J. Spec. Top. 155, 201–212 (2008). arXiv:0704.2039v2

  98. Ván, P.: Internal energy in dissipative relativistic fluids. J. Mech. Mater. Struct. 3(6), 1161–1169 (2008). arXiv:0712.1437 [nucl-th]

  99. Bíró, T.S., Molnár, E., Ván, P.: A thermodynamic approach to the relaxation of viscosity and thermal conductivity. Phys. Rev. C 78, 014909 (2008). arXiv:0805.1061 [nucl-th]

  100. Matolcsi, T.: A Concept of Mathematical Physics: Models for SpaceTime. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest (1984)

    MATH  Google Scholar 

  101. Carter, B., Chamel, N.: Covariant analysis of newtonian multi-fluid models for neutron stars I: Milne–Cartan structure and variational formulation. Int. J. Mod. Phys. D 13(02), 291–325 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ván.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ván, P. Galilean relativistic fluid mechanics. Continuum Mech. Thermodyn. 29, 585–610 (2017). https://doi.org/10.1007/s00161-016-0545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0545-7

Keywords

Navigation