Skip to main content
Log in

SMA pseudo-elastic hysteresis with tension–compression asymmetry: explicit simulation based on elastoplasticity models

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

SMA pseudo-elastic hysteresis with tension–compression asymmetry at finite deformation may be simulated by finite elastoplastic J 2-flow models with nonlinear combined hardening, in a direct, explicit sense with no reference to any phase variables. To this goal, a novel method of treating tension–compression asymmetry is proposed, and the hardening moduli are determined directly from any two given pairs of single-variable functions shaping non-symmetric hysteresis loops in uniaxial tension and compression so that the combined hardening model thus established can automatically exactly give rise to any given shapes of non-symmetric hysteresis loops. Numerical examples show good agreement with test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect. Technical Report RD/B/N 731, GEGB (1966)

  2. Bouvet C., Calloch S., Lexcellent Ch.: A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and non-proportional loadings. Eur. J. Mech.-A/Solids 23, 37–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruhns O.T., Xiao H., Meyers A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)

    Article  MATH  Google Scholar 

  4. Bruhns O.T., Xiao H., Meyers A.: Some basic issues in traditional Eulerian formulations of finite elastoplasticity. Int. J. Plast. 19, 2007–2026 (2003)

    Article  MATH  Google Scholar 

  5. Bruhns O.T., Xiao H., Meyers A.: A weakened form of Ilyushin’s postulate and the structure of self-consistent Eulerian finite elastoplasticity. Int. J. Plast. 21, 199–219 (2005)

    Article  MATH  Google Scholar 

  6. Chang B.C., Shaw J.A., Ladicola M.A.: Thermodynamics of shape memory alloy wire: modeling, experiments, and applications. Continuum Mech. Thermodyn. 18, 83–118 (2006)

    Article  MATH  ADS  Google Scholar 

  7. Chen H.R.: Shape Memory Alloys: Manufacture, Properties and Applications. Nova Science Publishers, New York (2010)

    Google Scholar 

  8. Gall K., Sehitoglu H., Chumlyakov Y.I., Kireeva I.V.: Tension compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Materialia 47, 1203–1217 (1999)

    Article  Google Scholar 

  9. Hackl K., Heinen R.: A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Continuum Mech. Thermodyn. 19, 499–510 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Hackl K., Zhang W.G., Schmidt-Baldassari M., Hoppe U.: Micromechaninics of tension–compression asymmetry of polycrystalline shape memory-alloys. Materialwissenschaft und Werkstofftechnik 35, 284–288 (2004)

    Article  Google Scholar 

  11. Huo Y.Z.: A mathematical model for the hysteresis in shape memory alloys. Continuum Mech. Thermodyn. 1, 283–303 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. Huo Y.Z., Müller I.: Non-equilibrium thermodynamics of pseudoelasticity. Continuum Mech. Thermodyn. 5, 163–204 (1993)

    Article  MATH  ADS  Google Scholar 

  13. Lagoudas D.C., Entchev P.B., Popov P., Patoor E., Brinson L.C., Gao X.: Shape memory alloys, part II: modeling of polycrystals. Mech. Mater. 38, 430–462 (2006)

    Article  Google Scholar 

  14. Lexcellent Ch., Boubakar M.L., Bouvet Ch., Calloch S.: About modeling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions. Int. J. Solids Struct. 43, 613–626 (2006)

    Article  MATH  Google Scholar 

  15. Liu Y., Xie Z., Van Humbeeck J., Delaey L.: Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Materialia 46, 4325–4338 (1998)

    Article  Google Scholar 

  16. Otsuka K., Wayman C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  17. Paiva A., Savi M.A., Braga A.M.B., Calas D.M., Pacheco L.: A constitutive model for shape memory alloys considering tension–compression asymmetry and plasticity. Int. J. Solids Struct. 42, 3439–3457 (2005)

    Article  MATH  Google Scholar 

  18. Patoor E., EL Amrani M., Eberhardt A., Berveiller M.: Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys. J. Phys. IV C 2, 495–500 (1995)

    Google Scholar 

  19. Patoor E., Lagoudas D.C., Entchev P., Brinson L.C., Gao X.: Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38, 391–429 (2006)

    Article  Google Scholar 

  20. Prager W.: A new method of analyzing stresses and strains in work-hardening plastic solids. J. Appl. Mech. 23, 493–496 (1956)

    MATH  MathSciNet  Google Scholar 

  21. Raniecki B., Lexcellent Ch.: Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur. J. Mech.-A/Solids 17, 185–205 (1998)

    Article  MATH  Google Scholar 

  22. S̆ittner P., Lukás̆ P., Novák V., Daymond M.R., Swallowe G.M.: In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress. Mater. Sci. Eng. A 378, 97–104 (2004)

    Article  Google Scholar 

  23. S̆ittner P., Novák V.: Anisotropy of Cu-based shape memory alloys in tension/compression thermomechanical loads. J. Eng. Mater. Technol. 121, 48–55 (1999)

    Article  Google Scholar 

  24. S̆ittner P., Novák V.: Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int. J. Plast. 16, 1243–1268 (2000)

    Article  Google Scholar 

  25. Thamburaja P., Anand L.: Polycrystalline shape-memory materials: effect of crystallographic texture. J. Mech. Phys. Solids 49, 709–737 (2001)

    Article  MATH  ADS  Google Scholar 

  26. Xiao H.: Pseudoelastic hysteresis out of recoverable finite elastoplastic flows. Int. J. Plast. 41, 82–96 (2013)

    Article  Google Scholar 

  27. Xiao H.: An explicit, straightforward approach to modeling SMA pseudoelastic hysteresis. Int. J. Plast. 53, 228–240 (2014)

    Article  Google Scholar 

  28. Xiao H., Bruhns O.T., Meyers A.: A new aspect in kinematics of large deformations. In: Gupta, N.K. (ed.) Plasticity and Impact Mechanics, pp. 100–109. New Age publ. Ltd., New Delhi (1996)

    Google Scholar 

  29. Xiao H., Bruhns O. T., Meyers A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 124, 89–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xiao H., Bruhns O.T., Meyers A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Xiao H., Bruhns O.T., Meyers A.: Elastoplasticity beyond small deformations. Acta Mechanica 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  32. Xiao H., Bruhns O.T., Meyers A.: Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Xiao H., Bruhns O.T., Meyers A.: Finite elastoplastic J 2−flow models with strain recovery effects. Acta Mechanica 210, 13–25 (2010)

    Article  MATH  Google Scholar 

  34. Xiao H., Bruhns O.T., Meyers A.: Phenomenological elastoplasticity view on strain recovery loops characterizing shape memory materials. Z. Angew. Math. Mech. (ZAMM) 90, 544–564 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhu Y.P., Dui G.S.: A macro-constitutive model of polycrystalline NiTi SMAs including tensile-compressive asymmetry and torsion pseudoelastic behaviors. Int. J. Eng. Sci. 48, 2099–2106 (2010)

    Article  Google Scholar 

  36. Ziólkowski A.: Three-dimensional phenomenological thermodynamic model of pseudoelasticity of shape memory alloys at finite strains. Continuum Mech. Thermodyn. 19, 379–398 (2007)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XM., Wang, ZL. & Xiao, H. SMA pseudo-elastic hysteresis with tension–compression asymmetry: explicit simulation based on elastoplasticity models. Continuum Mech. Thermodyn. 27, 959–970 (2015). https://doi.org/10.1007/s00161-014-0394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0394-1

Keywords

Navigation