Skip to main content
Log in

Predicting multiple target tracking performance for applications on video sequences

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper presents a framework to predict the performance of multiple target tracking (MTT) techniques. The framework is based on the mathematical descriptors of point processes, the probability generating functional (p.g.fl). It is shown that conceptually the p.g.fls of MTT techniques can be interpreted as a transform that can be marginalized to an expression that encodes all the information regarding the likelihood model as well as the underlying assumptions present in a given tracking technique. In order to use this approach for tracker performance prediction in video sequences, a framework that combines video quality assessment concepts and the marginalized transform is introduced. The multiple hypothesis tracker and Markov Chain Monte Carlo data association methods are used as test cases. We introduce their transforms and perform a numerical comparison to predict their performance under identical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Although this is a relatively strong assumption, it provides reasonable results. Making this assumption weaker is subject of future work, as explained in more detail in our concluding remarks.

  2. ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/.

  3. https://motchallenge.net/vis/TUD-Stadtmitte.

  4. https://data.vision.ee.ethz.ch/cvl/aess/dataset/.

References

  1. Antunes, D.M., de Matos, D.M., Gaspar, J.: A library for implementing the multiple hypothesis tracking algorithm. arXiv preprint (2011)

  2. Cancela, B., Ortega, M., Penedo, M.G.: Multiple human tracking system for unpredictable trajectories. Mach. Vis. Appl. 25(2), 511–527 (2014)

    Article  Google Scholar 

  3. Chikkerur, S., Sundaram, V., Reisslein, M., Karam, L.J.: Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Trans. Broadcast. 57(2), 165–182 (2011)

    Article  Google Scholar 

  4. Cressie, N., Laslett, G.: Random set theory and problems of modeling. SIAM Rev. 29(4), 557–574 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893. doi:10.1109/CVPR.2005.177 (2005)

  6. Danchick, R., Newnam, G.: Reformulating Reid’s MHT method with generalised murty k-best ranked linear assignment algorithm. In: IEEE Proceedings on Radar, Sonar and Navigation, vol. 153, pp. 13–22. IEE (2006)

  7. EmBree, J.D.: Spatial temporal exponential-family point processes for the evolution of social systems. Ph.D. thesis, University of California Los Angeles (2015)

  8. Fortmann, T.E., Bar-Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Ocean. Eng. 8(3), 173–184 (1983)

    Article  Google Scholar 

  9. Hartikainen, J., Särkkä, S.: RBMCDAbox-Matlab toolbox of rao-blackwellized data association particle filters. Documentation of RBMCDA Toolbox for Matlab V (2008)

  10. Hoak, A., Medeiros, H., Povinelli, R.J.: Image-based multi-target tracking through multi-bernoulli filtering with interactive likelihoods. Sensors 17(3), 501 (2017). doi:10.3390/s17030501

    Article  Google Scholar 

  11. Kroese, D.: Handbook of Monte Carlo Methods. Wiley, Hoboken (2011)

    Book  MATH  Google Scholar 

  12. Leal-Taixá, L., Milan, A., Reid, I., Roth, S., Schindler, K.: Motchallenge 2015: towards a benchmark for multi-target tracking. arXiv preprint (2015)

  13. Maggio, E., Cavallaro, A.: Video Tracking: Theory and Practice. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  14. Mahler, R.P.: Statistical Multisource-Multitarget Information Fusion. Artech House Inc, Norwood (2007)

    MATH  Google Scholar 

  15. Medeiros, H., Holguin, G., Shin, P.J., Park, J.: A parallel histogram-based particle filter for object tracking on simd-based smart cameras. Comput. Vis. Image Underst. 114(11), 1264–1272 (2010)

    Article  Google Scholar 

  16. Milan, A., Leal-Taixé, L., Reid, I.D., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. CoRR arXiv:1603.00831 [abs]

  17. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  18. Moyal, J.: The general theory of stochastic population processes. Acta Math. 108(1), 1–31 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oh, S., Russell, S., Sastry, S.: Markov chain Monte Carlo data association for general multiple-target tracking problems. In: 43rd Conference on Decision and Control, vol. 1, pp. 735–742. IEEE (2004)

  20. Pemantle, R., Wilson, M.C.: Analytic Combinatorics in Several Variables, vol. 140. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  21. Pulford, G.W.: Taxonomy of multiple target tracking methods. IEEE Proc. Radar Sonar Navig. 152(5), 291–304 (2005)

    Article  Google Scholar 

  22. Reid, D.B.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979)

    Article  Google Scholar 

  23. Ristic, B., Vo, B.N., Clark, D., Vo, B.T.: A metric for performance evaluation of multi-target tracking algorithms. IEEE Trans. Signal Process. 59(7), 3452–3457 (2011)

    Article  MathSciNet  Google Scholar 

  24. Spinelli, B.M.: Statistical inference for stable point processes. Ph.D. thesis (2012)

  25. Streit, R.: The probability generating functional for finite point processes, and its application to the comparison of PHD and intensity filters. J. Adv. Inf. Fusion 8(2) (2013)

  26. Streit, R.: Saddle point method for JPDA and related filters. In: 2015 18th International Conference on Information Fusion (Fusion), pp. 1680–1687. IEEE (2015)

  27. Streit, R., Degen, C., Koch, W.: The pointillist family of multitarget tracking filters. arXiv preprint (2015)

  28. Streit, R.L.: Poisson Point Processes: Imaging, Tracking, and Sensing. Springer, New York (2010)

    Book  Google Scholar 

  29. Tapiero, J.E., Bishop, R.H.: Bayesian estimation for tracking of spiraling reentry vehicles. In: AIAA Guidance, Navigation, and Control (GNC) Conference (2013)

  30. Tinne, D.: Rigorously Bayesian multitarget tracking and localization. Ph.D. thesis (2010)

  31. Vo, B., Vo, B., Cantoni, A.: The cardinalized probability hypothesis density filter for linear Gaussian multi-target models. In: 40th Annual Conference on Information Sciences and Systems, pp. 681–686. IEEE (2006)

  32. Vo, B.N., Ma, W.K.: The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54(11), 4091–4104 (2006)

    Article  Google Scholar 

  33. Vo, B.T., Vo, B.N., Cantoni, A.: The cardinality balanced multi-target multi-bernoulli filter and its implementations. IEEE Trans. Signal Process. 57(2), 409–423 (2009)

    Article  MathSciNet  Google Scholar 

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  35. Wang, Z., Sheikh, H.R., Bovik, A.C.: Objective Video Quality Assessment. The Handbook of Video Databases: Design and Applications, pp. 1041–1078. CRC Press, Boca Raton (2003). ISBN: 9780849370069

  36. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale Structural Similarity for Image Quality Assessment, pp. 1398–1402. IEEE, New York (2003)

    Google Scholar 

  37. Westcott, M.: The probability generating functional. J. Aust. Math. Soc. 14, 448–466 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yeddanapudi, M.K.: Estimation and data association algorithms for multisensor-multitarget tracking. Ph.D. thesis (1996)

  39. Zuriarrain, I., Mekonnen, A.A., Lerasle, F., Arana, N.: Tracking-by-detection of multiple persons by a resample-move particle filter. Mach. Vis. Appl. 24(8), 1751–1765 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapiero, J.E., Medeiros, H. & Bishop, R.H. Predicting multiple target tracking performance for applications on video sequences. Machine Vision and Applications 28, 539–550 (2017). https://doi.org/10.1007/s00138-017-0840-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0840-8

Keywords

Navigation