Skip to main content
Log in

Telescopic actions

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

A group action H on X is called “telescopic” if for any finitely presented group G, there exists a subgroup H’ in H such that G is isomorphic to the fundamental group of X/H’. We construct examples of telescopic actions on some CAT[–1] spaces, in particular on 3 and 4-dimensional hyperbolic spaces. As applications we give new proofs of the following statements: (1) Aitchison’s theorem: Every finitely presented group G can appear as the fundamental group of M/J, where M is a compact 3-manifold and J is an involution which has only isolated fixed points; (2) Taubes’ theorem: Every finitely presented group G can appear as the fundamental group of a compact complex 3-manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Amorós M. Burger K. Corlette D. Kotschick, and D. Toledo. Fundamental groups of compact Kähler manifolds (English summary). Mathematical Surveys and Monographs, Vol. 44. American Mathematical Society, Providence (1996), pp. xii+140. ISBN: 0-8218-0498-7.

  2. Armstrong M.A.: The fundamental group of the orbit space of a discontinuous group. Proceedings of the Cambridge Philosophical Society 64, 299–301 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Besse. Einstein manifolds. Reprint of the 1987 edition. Classics in Mathematics. Springer, Berlin (2008). pp. xii+516. ISBN: 978-3-540-74120-6

  4. H.S.M. Coxeter. Regular honeycombs in hyperbolic space. Twelve Geometric Essays, Vol. I11. Southern Illinois University Press, Carbondale (2008), pp. 200–214.

  5. Feighn M.: Branched covers according to J.W. Alexander. Collect. Math. 37(1), 55–60 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Fine J., Panov D.: Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle. Geometry and Topology 14, 1723–1763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Fine and D. Panov. The diversity of symplectic Calabi–Yau six-manifolds. arXiv:1108.5944 (2012, preprint).

  8. Gaifullin, A. Combinatorial realisation of cycles and small covers. Proceedings of the 6ecm, Krakow (2012, Preprint). arXiv:1204.0208.

  9. M. Gromov. Manifolds: Where do we come from? What are we? Where. (2010, Preprint).

  10. A. Haefliger. Orbi-espaces. Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988). Progress in Mathematics, Vol. 83. Birkhäuser Boston, Boston (1990), pp. 203–213.

  11. Hauser H.: The Hironaka theorem on resolution of singularities. Bulletin of the American Mathematical Society (N.S.) 40(3), 323–403 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heil W.H.: Some finitely presented non-3-manifold groups. Proceedings of American Mathematical Society, 53(2), 497–500 (1975)

    MathSciNet  MATH  Google Scholar 

  13. Hilden H., Lozano M., Montesinos J., Whitten W.: On universal groups and three-manifolds. Inventiones Mathematicae, 87, 441–456 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kapovich M.: Conformally flat metrics on 4-manifolds. Journal of Differential Geometry 66(2), 289–301 (2004)

    MathSciNet  MATH  Google Scholar 

  15. M. Kapovich. Dirichlet fundamental domains and complex projective varieties. arXiv:1201.3129.

  16. Kollar J.: Shafarevich maps and plurigenera of algebraic varieties. Inventiones Mathematicae 113, 177–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Taubes C.: The existence of anti-self-dual conformal structures. Journal of Differential Geometry, 36(1), 163–253 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Translation: E.B. Vinberg. Hyperbolic reflection groups. Russian Mathematical Survey, (1)40 (1985), 31–75.

  19. H. Wilton. 3-manifold groups are known, right? ldtopology.wordpress.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petrunin.

Additional information

D. Panov is a Royal Society University Research Fellow. A. Petrunin was partially supported by NSF Grant DMS 0905138.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panov, D., Petrunin, A. Telescopic actions. Geom. Funct. Anal. 22, 1814–1831 (2012). https://doi.org/10.1007/s00039-012-0194-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0194-3

Keywords

Navigation