Skip to main content
Log in

Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In Grebenev, Wacławczyk, Oberlack (2019 Phys A: Math. Theor. 52, 33), the conformal invariance (CI) of the characteristic \({\varvec{X}}_{1}(t)\) (the zero-vorticity Lagrangian path) of the first equation (i.e. for the evolution of the 1-point PDF \(f_1({\varvec{x}}_{1},\omega _{1},t)\), \({\varvec{x}}_{1} \in D_1 \subset {\mathbb {R}}^2)\) of the inviscid Lundgren–Monin–Novikov (LMN) equations for 2d vorticity fields was derived. The infinitesimal operator admitted by the characteristics equation generates an infinite-dimensional Lie pseudo-group G which conformally acts on \(D_1\). We define the conformal invariant differential form \(\mathrm{d}s^2 = f_1\cdot \left( {\mathrm{d}X_{1}^{ 1}}^2 + {\mathrm{d}X_{1}^{ 2}}^2\right) \) along the characteristic \(\left. {\varvec{X}}_{1}(t)\right| _{\omega _{1} = 0}\) together with the simple action functional \({\mathcal F}({\varvec{X}}_{1},\mathrm{d}s^2)\). We demonstrate that \(G_{{\mathcal {Y}}}\), which is a subgroup of the group G restricted on the variables \({\varvec{x}}_{1}\) and \(f_1\), gives rise to a symmetry transformations of \({\mathcal {F}}({\varvec{X}}_{1},\mathrm{d}s^2)\). With this, we calculate the second-order universal differential invariant \(J_2^{{\mathcal {Y}}}\) (or the multiscale representation of the invariants) of \(G_{{\mathcal {Y}}}\) under the action on the zero-vorticity characteristics. We show that \({{\mathcal {F}}}({\varvec{X}}_{1},\mathrm{d}s^2)\) is a scalar invariant and generates all differential invariants, which look like the quantities of different scales, from \(J_2^{{\mathcal {Y}}}\) by the operators of invariant differentiation. It gives insight into the geometry of a flow domain nearby point \({\varvec{x}}_{1}\) in the sense of Cartan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cartan, E.: La Théoric des Groupes Finis et Continus et la Géometrie Differentielle traittée par le Méthode du Repére Mobile. Gauthier-Villars, Paris (1937)

    MATH  Google Scholar 

  2. Olver, P.J., Pohjanpelto, J.: Differential invariant algebra of Lie pseudo-groups. Adv. Math. 222(5), 1746–1792 (2009)

    Article  MathSciNet  Google Scholar 

  3. Hubert, E., Olver, P.J.: Differential invariants of conformal and projective surfaces. SIGMA 3, 97–115 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Grebenev, V.N., Wac��awczyk, M., Oberlack, M.: Conformal invariance of the Lungren–Monin–Novikov equations for vorticity fields in 2D turbulence. J. Phys. A: Math. Theor. 50, 435502 (2017)

    Article  MathSciNet  Google Scholar 

  5. Grebenev, V.N., Wacławczyk, M., Oberlack, M.: Conformal invariance of the zero-vorticity Lagrangian path in 2D turbulence. J. Phys. A: Math. Theor. 52, 335501 (2019). https://doi.org/10.1088/1751-8121/ab2f61

    Article  MathSciNet  Google Scholar 

  6. Wacławczyk, M., Grebenev, V.N., Oberlack, M.: Conformal invariance of characteristic lines in a class of hydrodynamic models. Symmetry 12, 1482 (2020). https://doi.org/10.3390/sym12091482

    Article  Google Scholar 

  7. Friedrich, R., Daitche, A., Kamps, O., Lülff, J., Michel Voßkuhle, M., Wilczek, M.: The Lundgren–Monin–Novikov hierarchy: kinetic equations for turbulence. C. R. Physique 13, 929–953 (2012)

    Article  Google Scholar 

  8. Rivera, M.K., Aluie, H., Ecke, R.E.: The direct enstrophy cascade of two-dimensional soap film flows. Phys. Fluids 26, 055105 (2014)

    Article  Google Scholar 

  9. Ouellette, N.T.: Turbulence in two dimensions. Phys. Today 65, 68–69 (2012)

    Article  Google Scholar 

  10. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Conformal invariance in two-dimensional turbulence. Nat. Phys. 2(2), 124–128 (2006)

    Article  Google Scholar 

  11. Falkovich, G., Musacchio, S: Conformal invariance in inverse turbulent cascades (2010). arXiv:1012.3868

  12. Bernard, D., Boffetta, G., Celani, A., Falkovich, G.: Inverse turbulent cascades and conformally invariant curves. Phys. Rev. Lett. 98, 024501–504 (2007)

    Article  Google Scholar 

  13. Lie, S.: Klassifikation und integration von gewöhnlichen differentntialgleichungen zwischen \(x\), \(y\), die eine gruppe von transformationen gestatten I. II. Math. Ann. 32, 213–281 (1888)

    Article  Google Scholar 

  14. Beffa, M.G.: Relative and absolute differential invariants for conformal curves. J. Lie Theory 13, 213–245 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Ovsyannikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978)

    MATH  Google Scholar 

  16. Tresse, A.: Sur les invariants différentiels des groupes continus de transformations. Acta Math. 18, 1–88 (1894)

    Article  MathSciNet  Google Scholar 

  17. Simon, U.: The Pick invariant in equaffine differential geometry. Abh. Math. Sem. Univ. Hamburg 1983, 225–228 (1983)

    Article  Google Scholar 

  18. Thalabard, S., Bec, J.: Turbulence of generalised flows in two dimensions. J. Fluid Mech. 883 A49 (2020)

  19. Sabitov, K.: Quasi-conformal mappings of a surface generated by its isometric transformation and bendings of the surface onto itself. Fundamentalnaya i prikladnaya matematika 1, 281–288 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Kontsevich, M., Suhov, Y.: On Malliavin measure and SLE and CFT. Proc. Steklov Inst. Math. 258(1), 100–146 (2007)

    Article  MathSciNet  Google Scholar 

  21. Eisenhart, L.H.: Continuous Group of Transformations. Prienceton University Press, Prienceton (1933)

    MATH  Google Scholar 

  22. Wacławczyk, M., Oberlack, M.: Application of the extended Lie group analysis to the Hopf functional formulation of the Burgers equation. J. Math. Phys. 54, 072901 (2013). https://doi.org/10.1063/1.4812803

    Article  MathSciNet  MATH  Google Scholar 

  23. Olver, P., Sapiro, G., Tannenbaum, A.: Differential invariant signatures and flows in computer vision: a symmetry group approach. In: ter Haar, Romeny B.M. (ed.) Geometry-Driven Diffusion in Computer Vision. Computational Imaging and Vision, vol. 1. Springer, Dordrecht (1994)

    Google Scholar 

Download references

Acknowledgements

VG acknowledges the financial support of FAPESP Foundation, Brazil (Grant No. 2018/21330-2). The author AG thanks CNPq and FAPESP for the support. MO would like to thank for partial funding both from the Collaborative Research Center “Multiscale Simulation Methods for Soft Matter Systems” (TRR 146) through Project Number 233630050 and the single Project OB 96/48-1. Both projects are funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Grebenev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenev, V.N., Grichkov, A.N., Oberlack, M. et al. Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields. Z. Angew. Math. Phys. 72, 129 (2021). https://doi.org/10.1007/s00033-021-01562-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01562-2

Keywords

Mathematics Subject Classification

Navigation