Skip to main content
Log in

Incremental equations for pre-stressed compressible viscoelastic materials

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we face the question of describing the incremental motion of pre-stressed isotropic homogeneous compressible viscoelastic materials of differential type. We obtain a set of linear evolution equations which generalizes the previous mathematical description of the problem. Well-posedeness of the associated Cauchy problems and dissipation properties are established as well. In the final part, a reduction to a unique equation of the sixth order is derived, and a physical example is exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  2. Blatz P.J., Ko W.L.: Application of finite elastic theory to the deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251 (1962)

    Article  Google Scholar 

  3. Boulanger Ph., Hayes M.: Bivectors and Waves in Mechanics and Optics. Chapmann Hall, London (1993)

    MATH  Google Scholar 

  4. Destrade M., Saccomandi G.: Finite amplitude inhomogeneous waves in Mooney–Rivlin viscoelastic solid. Wave Motion 40, 251–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Destrade M., Saccomandi G.: Finite amplitude elastic waves propagating in compressible solids. Phys. Rev. E 72, 016620 (2005)

    Article  MathSciNet  Google Scholar 

  6. Destrade M., Ogden R.W., Saccomandi G.: Small amplitude waves and stability for a prestressed viscoelastic solid. ZAMP 60, 511–528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dowaikh M.A., Ogden R.W.: On surface waves and deformation in compressible elastic half-space. SAACM 1(1), 27–45 (1991)

    MathSciNet  Google Scholar 

  8. Dowaikh M.A., Ogden R.W.: On surface waves and deformation in a prestressed incompressible elastic solid. IMA J. Appl. Math 44, 261–284 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Engel K.J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  10. Fragnelli G.: Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl. 367(1), 204–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fragnelli G., Mugnai D.: Stability of solutions for nonlinear wave equations with a positive-negative damping. Discret. Contin. Dyn. Syst. S 4(3), 615–622 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Fragnelli G., Mugnai D.: Stability of solutions for some nonlinear damped wave equations. SIAM J. Control Optim. 47(5), 2520–2539 (2008)

    Article  MathSciNet  Google Scholar 

  13. Geissler E., Hecht A.M.: The Poisson ratio in polymer gels. Macromolecules 13(5), 1276–1280 (1980)

    Article  Google Scholar 

  14. Greaves G.N., Greer A.L., Lakes R.S., Rouxel T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  Google Scholar 

  15. Green A.E., Adkins J.E.: Large Elastic Deformations and Nonlinear Continuum Mechanics. University press, Oxford (1960)

    Google Scholar 

  16. Hayes M.A., Rivlin R.S.: Propagation of small amplitude waves in a deformed viscoelastic solid I. J. Acoust. Soc. Am. 46, 610–616 (1969)

    Article  MATH  Google Scholar 

  17. Hayes M.A., Rivlin R.S.: Propagation of small amplitude waves in a deformed viscoelastic solid II. J. Acoust. Soc. Am. 51, 1652–1663 (1972)

    Article  MATH  Google Scholar 

  18. Kantorovitz S.: Topics in Operator Semigroups. Birkhäuser Boston, Basel, Berlin (2010)

    Book  MATH  Google Scholar 

  19. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer, New York (1983)

    Book  Google Scholar 

  20. Price B.D., Gibson A.P., Tan L.T., Royle G.J.: An elastically compressible phantom material with mechanical and X-ray attenuation properties equivalent to breast tissue. Phys. Med. Biol. 55, 1177–1188 (2010)

    Article  Google Scholar 

  21. Quintanilla R., Saccomandi G.: Some qualitative properties for the equations of pre-stressed. Mech. Res. Commun. 36, 547–555 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rose J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  23. Saccomandi G.: Small amplitude waves in deformed Mooney-Rivlin viscoelastic solids. Math. Mech. Solids 10, 361–376 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Truesdell, C.A., Noll, W.: The nonlinear field theories. In: Fluegge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1995)

  25. Wineman A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14, 300–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Mugnai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colonnelli, S., Mugnai, D. & Salvatori, M.C. Incremental equations for pre-stressed compressible viscoelastic materials. Z. Angew. Math. Phys. 64, 679–703 (2013). https://doi.org/10.1007/s00033-012-0254-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0254-4

Mathematics Subject Classification

Keywords

Navigation