Skip to main content
Log in

Well-posedness and unconditional uniqueness of mild solutions to the Keller–Segel system in uniformly local spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the well-posedness of the Keller–Segel system in uniformly local Lebesgue spaces. It is well known that the parabolic-elliptic Keller–Segel system is one of diffusion equations involving a nonlocal term. In this paper, we study the parabolic-elliptic Keller–Segel system by using only local properties of the initial data. Moreover, the unconditional uniqueness of mild solutions to the Keller–Segel system is studied using uniformly local Lebesgue spaces. We also consider the uniformly local almost periodicity of mild solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N. and Smith, K. T., Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475.

  2. Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., and Dlotko, T., Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci. 14 (2004), 253–293.

    Article  MathSciNet  Google Scholar 

  3. Ben-Artzi, M., Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal. 128 (1994), 329–358.

    Article  MathSciNet  Google Scholar 

  4. Biler, P., The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math. 114 (1995), 181–205.

    Article  MathSciNet  Google Scholar 

  5. Biler, P., Cannone, M., Guerra, I. A., and Karch, G., Global regular and singular solutions for a model of gravitating particles, Math. Ann. 330 (2004), 693–708.

    Article  MathSciNet  Google Scholar 

  6. Brezis, H. and Cazenave, T., A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304.

    Article  MathSciNet  Google Scholar 

  7. Cygan, S., Karch, G., Krawczyk, K., and Wakui, H., Stability of constant steady states of a chemotaxis model, 2101.01467, 20 pp.

  8. Fujishima, Y. and Ioku, N., Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl. (9) 118 (2018), 128–158.

  9. Giga, Y., Mahalov, A., and Nicolaenko, B., The Cauchy problem for the Navier-Stokes equations with spatially almost periodic initial data, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ (2007), 213–222.

  10. Giga, Y. and Miyakawa, T., Navier-Stokes flow in\({{\bf R}}^3\)with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577–618.

    Article  MathSciNet  Google Scholar 

  11. Giga, Y., Miyakawa, T., and Osada, H., Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal. 104 (1988), 223–250.

    Article  MathSciNet  Google Scholar 

  12. Grafakos, L., Modern Fourier analysis, Graduate Texts in Mathematics, Springer, New York (2014), xvi+624pp.

  13. Haque, M. R., Ioku, N., Ogawa, T., and Sato, R., Well-posedness for the Cauchy problem of convection–diffusion equations in the critical uniformly local Lebesgue spaces, Differential Integral Equations 34 (2021), 223–244.

    MathSciNet  MATH  Google Scholar 

  14. Ishige, K. and Sato, R., Heat equation with a nonlinear boundary condition and uniformly local\(L^r\)spaces, Discrete Contin. Dyn. Syst. 36 (2016), 2627–2652.

    Article  MathSciNet  Google Scholar 

  15. Iwabuchi, T., Global well-posedness for Keller-Segel system in Besov type spaces, J. Math. Anal. Appl. 379 (2011), 930–948.

    Article  MathSciNet  Google Scholar 

  16. Iwabuchi, T., Local solvability of the Keller-Segel system with Cauchy data in the Besov spaces, Math. Methods Appl. Sci. 37 (2014), 1273–1277.

    Article  MathSciNet  Google Scholar 

  17. Iwabuchi, T. and Ogawa, T., Ill-posedness issue for the drift diffusion system in the homogeneous Besov spaces, Osaka J. Math. 53 (2016), 919–939.

    MathSciNet  MATH  Google Scholar 

  18. Jäger, W. and Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819–824.

    Article  MathSciNet  Google Scholar 

  19. Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), 181–205.

    Article  MathSciNet  Google Scholar 

  20. Keller, E. F. and Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), 399–415.

    Article  MathSciNet  Google Scholar 

  21. Koch, H. and Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math. 157 (2001), 22–35.

    Article  MathSciNet  Google Scholar 

  22. Kozono, H. and Sugiyama, Y., Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system, J. Evol. Equ. 8 (2008), 353–378.

    Article  MathSciNet  Google Scholar 

  23. Kozono, H., Sugiyama, Y., and Yahagi, Y., Existence and uniqueness theorem on weak solutions to the parabolic-elliptic Keller-Segel system, J. Differential Equations 253 (2012), 2295–2313.

    Article  MathSciNet  Google Scholar 

  24. Kurokiba, M. and Ogawa, T., Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential Integral Equations 16 (2003), 427–452.

    MathSciNet  MATH  Google Scholar 

  25. Kurokiba, M. and Ogawa, T., Well-posedness for the drift-diffusion system in \(L^p\) arising from the semiconductor device simulation, J. Math. Anal. Appl. 342 (2008), 1052–1067.

    Article  MathSciNet  Google Scholar 

  26. Matos, J. and Souplet, P., Instantaneous smoothing estimates for the Hermite semigroup in uniformly local spaces and related nonlinear equations, Houston J. Math. 30 (2004), 879–890.

    MathSciNet  MATH  Google Scholar 

  27. Maekawa, Y. and Terasawa, Y., The Navier-Stokes equations with initial data in uniformly local\(L^p\)spaces, Differential Integral Equations 19 (2006), 369–400.

    MathSciNet  MATH  Google Scholar 

  28. Miyamoto, Y. and Suzuki, M., Thresholds on growth of nonlinearities and singularity of initial functions for semilinear heat equations, 2104.14773, 31pp.

  29. Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995), 581–601.

    MathSciNet  MATH  Google Scholar 

  30. Nagai, T. and Mimura, M., Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics, SIAM J. Appl. Math. 43 (1983), 449–464.

    Article  MathSciNet  Google Scholar 

  31. Ogawa, T. and Shimizu, S., The drift-diffusion system in two-dimensional critical Hardy space, J. Funct. Anal. 255 (2008), 1107–1138.

    Article  MathSciNet  Google Scholar 

  32. Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311–338.

    Article  MathSciNet  Google Scholar 

  33. Sato, R., Existence of solutions to the slow diffusion equation with a nonlinear source, J. Math. Anal. Appl. 484 (2020), 123721, 14 pp.

  34. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970, xiv+287 pp.

  35. Taylor, M. E., Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407–1456.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for kind suggestions and comments. The author wishes to express gratitude to Assistant Professor Ryuichi Sato for helpful discussions with him. The work of the author is supported by JSPS Grant-in-Aid for JSPS Fellows #19J20763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Suguro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suguro, T. Well-posedness and unconditional uniqueness of mild solutions to the Keller–Segel system in uniformly local spaces. J. Evol. Equ. 21, 4599–4618 (2021). https://doi.org/10.1007/s00028-021-00727-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00727-w

Keywords

Navigation