Skip to main content
Log in

A Sharp Version of Phragmén–Lindelöf Type Theorem for the Stationary Schrödinger Equation

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we use Cauchy’s integral formula with respect to the Schrödinger operator to investigate the asymptotic behavior for the stationary Schrödinger equation when it is applied to some Schrödinger integral equations. Moreover, from using the theoretical significance of the result obtained, we draw conclusions about the Phragmén–Lindelöf principle of weak solutions of the equations. Furthermore, a sharp version of this principle is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Not applicable.

Code Availability Statement

Not applicable.

References

  1. Azarin, V.S.: Generalization of a theorem of Hayman’s on a subharmonic function in an \(n\)-dimensional cone. Mat. Sb. (N. S.) 108(66), 248–264 (1965). (Russian)

    MathSciNet  Google Scholar 

  2. Bawin, M., Coon, S.A.: Singular inverse square potential, limit cycles, and self-adjoint extensions. Phys. Rev. A 67(4), 42–72 (2003)

    Article  Google Scholar 

  3. Bouaziz, D., Bawin, M.: Singular inverse square potential in arbitrary dimensions with a minimal length: application to the motion of a dipole in a cosmic string background. Phys. Rev. A 58, 27–49 (1988)

    Google Scholar 

  4. Camblong, H., Epele, L., Fanchiotti, H., Canal, C.: Quantum anomaly in molecular physics. Phys. Rev. Lett. 87 (2001)

  5. Cascante, C., Pascuas, D.: Holomorphy tests based on Cauchy’s integral formula. Pac. J. Math. 171(1), 89–116 (1995)

    Article  MathSciNet  Google Scholar 

  6. Du, J., Zhang, Z.: A Cauchy’s integral formula for functions with values in a universal Clifford algebra and its applications. Complex Var. Theory Appl. 47(10), 915–928 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Efimov, V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33(8), 563–564 (1970)

    Article  Google Scholar 

  8. Galajinsky, A., Lechtenfeld, O., Polovnikov, K.: Calogero models and nonlocal conformal transformations. Phys. Lett. B 643(4), 221–227 (2006)

    Article  MathSciNet  Google Scholar 

  9. Khan, M.A., Najmi, M.: Discrete analogue of Cauchy’s integral formula. Bul. Inst. Politeh. Iaşi. Secţ. I. Mat. Mec. Teor. Fiz. 45(49), no. 3–4, 39–44 (1999)

  10. Lei, Y.: Liouville theorems and classification results for a nonlocal Schrödinger equation. Discrete Contin. Dyn. Syst. 38(11), 5351–5377 (2018)

    Article  MathSciNet  Google Scholar 

  11. Levin, B., Kheyfits, A.: Asymptotic behavior of subfunctions of time-independent Schrödinger operator. In: Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis, Chap. 11, pp. 323–397. Science Press, Beijing (2008)

  12. Li, H., Guo, Y.: Numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains. Phys. Rev. E 96(6), 063305 (2017)

    Article  MathSciNet  Google Scholar 

  13. Liang, G., Zhang, J.: Existence and boundedness of nontrivial solution to a nonlinear Schrödinger equation. Acta Anal. Funct. Appl. 19(3), 250–257 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Liao, B., Dong, G., Ma, Y., Gao, J.: Linear-shear-current modified Schrödinger equation for gravity waves in finite water depth. Phys. Rev. E 96(4), 043111 (2017)

    Article  MathSciNet  Google Scholar 

  15. Iljin, V.A.: Spectral Theory of Differential Operators. Self-Adjoint Differential Operators. Consultants Bureau, New York (1995)

    Google Scholar 

  16. Shao, L., Chen, H.: Ground state of solutions for a class of fractional Schrödinger equations with critical Sobolev exponent and steep potential well. Math. Methods Appl. Sci. 40(18), 7255–7266 (2017)

    Article  MathSciNet  Google Scholar 

  17. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N. S.) 7(3), 447–526 (1982)

    Article  Google Scholar 

  18. Wang, J.: High-order conservative schemes for the space fractional nonlinear Schrödinger equation. Appl. Numer. Math. 165, 248–269 (2021)

    Article  MathSciNet  Google Scholar 

  19. Wang, Z., Cui, S.: On the Cauchy problem of a coherently coupled Schrödinger system. Acta Math. Sci. Ser. B Engl. Ed. 36(2), 371–384 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous referees very much for carefully reading this paper and suggesting many valuable comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Thi Kim Vi Tran.

Ethics declarations

Conflict of interest

The author declare that she has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.K.V. A Sharp Version of Phragmén–Lindelöf Type Theorem for the Stationary Schrödinger Equation. Results Math 76, 99 (2021). https://doi.org/10.1007/s00025-021-01386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01386-6

Keywords

Mathematics Subject Classification

Navigation