Skip to main content
Log in

Localised Wannier Functions in Metallic Systems

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The existence and construction of exponentially localised Wannier functions for insulators are a well-studied problem. In comparison, the case of metallic systems has been much less explored, even though localised Wannier functions constitute an important and widely used tool for the numerical band interpolation of metallic condensed matter systems. In this paper, we prove that, under generic conditions, N energy bands of a metal can be exactly represented by \(N+1\) Wannier functions decaying faster than any polynomial. We also show that, in general, the lack of a spectral gap does not allow for exponential decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auckly, D., Kuchment, P.: On Parseval frames of exponentially decaying composite Wannier functions. In: Bonetto, F., Borthwick, D., Harrell, E., Loss M. (eds.) Mathematical Problems in Quantum Physics, pp. 227–240. Vol. 717 in Contemporary Mathematics Volume. American Mathematical Society (2018)

  2. Brouder, Ch., Panati, G., Calandra, M., Mourougane, Ch., Marzari, N.: Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98(4), 046402 (2007)

    Article  ADS  Google Scholar 

  3. Cancès, É., Levitt, A., Panati, G., Stoltz, G.: Robust determination of maximally localized Wannier functions. Phys. Rev. B 95(7), 075114 (2017)

    Article  ADS  Google Scholar 

  4. Cohen, M.L., Bergstresser, T.K.: Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys. Rev. 141(2), 789 (1966)

    Article  ADS  Google Scholar 

  5. Cornean, H.D., Herbst, I., Nenciu, Gh: On the construction of composite Wannier functions. Ann. Henri Poincarè 17(12), 3361–3398 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cornean, H.D., Monaco, D.: On the construction of Wannier functions in topological insulators: the 3D case. Ann. Henri Poincarè 18(12), 3863–3902 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cornean, H.D., Moscolari, M., Monaco, D.: Parseval frames of exponentially localized magnetic Wannier functions. To appear in Commun. Math. Phys. (2019)

  8. Cornean, H.D., Monaco, D., Teufel, S.: Wannier functions and \(\mathbb{Z}_2\) invariants in time-reversal symmetric topological insulators. Rev. Math. Phys. 29(2), 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damle, A., Levitt, A., Lin, L.: Variational formulation for Wannier functions with entangled band structure. Preprint. arXiv:1801.08572 (2018)

  10. Damle, A., Lin, L., Ying, L.: SCDM-k: localized orbitals for solids via selected columns of the density matrix. J. Comput. Phys. 334, 1–15 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fiorenza, D., Monaco, D., Panati, G.: Construction of real-valued localized composite Wannier functions for insulators. Ann. Henri Poincaré 17(1), 63–97 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Friedan, D.: A proof of the Nielsen–Ninomiya theorem. Commun. Math. Phys. 85(4), 481–490 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  13. Fefferman, C., Weinstein, M.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25(4), 1169–1220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gontier, D., Levitt, A., Siraj-Dine, S.: Numerical construction of Wannier functions through homotopy. Preprint. arXiv:1812.06746 (2018)

  15. Guillemin, V., Pollack, A.: Differential Topology. Prentice Hall (1974)

  16. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  17. Jost, J.: Compact Riemann Surfaces: An Introduction to Contemporary Mathematics. Springer, Berlin (2013)

    MATH  Google Scholar 

  18. Kuchment, P.: An overview of periodic elliptic operators. Bull. AMS 53, 343–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D.: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84(4), 1419 (2012)

    Article  ADS  Google Scholar 

  20. Marzari, N., Vanderbilt, D.: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56(20), 12847 (1997)

    Article  ADS  Google Scholar 

  21. Monaco, D.: Chern and Fu–Kane–Mele invariants as topological obstructions. Chap. 12 In: Dell’Antonio, G., Michelangeli, A. (eds.) Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Vol. 18 in Springer INdAM Series. Springer (2017)

  22. Monaco, D., Panati, G.: Topological invariants of eigenvalue intersections and decrease of Wannier functions in graphene. J. Stat. Phys. 155(6), 1027–1071 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Monaco, D., Panati, G.: Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry. Acta Appl. Math. 137(1), 185–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Monaco, D., Panati, G., Pisante, A., Teufel, S.: Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys. 359(1), 61–100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mostofi, A.A., Yates, J.R., Lee, Y.-S., Souza, I., Vanderbilt, D., Marzari, N.: wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178(9), 685–699 (2008)

    Article  ADS  MATH  Google Scholar 

  26. Mathai, V., Thiang, GCh.: Global topology of Weyl semimetals and Fermi arcs. J. Phys. A 50(11), 11LT01 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mustafa, J.I., Coh, S., Cohen, M.L., Louie, S.G.: Automated construction of maximally localized Wannier functions: optimized projection functions method. Phys. Rev. B 92(16), 165134 (2015)

    Article  ADS  Google Scholar 

  28. Nielsen, H.B., Ninomiya, M.: A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105(2–3), 219–223 (1981)

    Article  ADS  Google Scholar 

  29. Panati, G.: Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8(5), 995–1011 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators. Academic Press (1978)

  31. Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51(24), 2167 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  32. Souza, I., Marzari, N., Vanderbilt, D.: Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65(3), 035109 (2001)

    Article  ADS  Google Scholar 

  33. Thiang, GCh., Sato, K., Gomi, K.: FuKaneMele monopoles in semimetals. Nucl. Phys. B 923, 107–125 (2017)

    Article  ADS  MATH  Google Scholar 

  34. von Neumann, J., Wigner, E.: On the behaviour of eigenvalues in adiabatic processes. Phys. Z. 30, 467 (1929). Republished in: Hettema, H. (ed.) Quantum Chemistry: Classic Scientific Papers, pp. 25–31. World Scientific (2000)

  35. Yates, J.R., Wang, X., Vanderbilt, D., Souza, I.: Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75(19), 195121 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from Grant 8021-00084B of the Danish Council for Independent Research | Natural Sciences, from the ERC Consolidator Grant 2016 “UniCoSM—Universality in Condensed Matter and Statistical Mechanics” and from PEPS JC 2017 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Monaco.

Additional information

Communicated by Vieri Mastropietro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornean, H.D., Gontier, D., Levitt, A. et al. Localised Wannier Functions in Metallic Systems. Ann. Henri Poincaré 20, 1367–1391 (2019). https://doi.org/10.1007/s00023-019-00767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00767-6

Mathematics Subject Classification

Navigation