Skip to main content
Log in

Improved Well-Posedness for the Triple-Deck and Related Models via Concavity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We establish linearized well-posedness of the Triple-Deck system in Gevrey-\(\frac{3}{2}\) regularity in the tangential variable, under concavity assumptions on the background flow. Due to the recent result (Dietert and Gerard-Varet in SIAM J Math Anal, 2021), one cannot expect a generic improvement of the result of Iyer and Vicol (Commun Pure Appl Math 74(8):1641–1684, 2021) to a weaker regularity class than real analyticity. Our approach exploits two ingredients, through an analysis of space-time modes on the Fourier–Laplace side: (i) stability estimates at the vorticity level, that involve the concavity assumption and a subtle iterative scheme adapted from Gerard-Varet et al. (Optimal Prandtl expansion around concave boundary layer, 2020. arXiv:2005.05022) (ii) smoothing properties of the Benjamin–Ono like equation satisfied by the Triple-Deck flow at infinity. Interestingly, our treatment of the vorticity equation also adapts to the so-called hydrostatic Navier–Stokes equations: we show for this system a similar Gevrey-\(\frac{3}{2}\) linear well-posedness result for concave data, improving at the linear level the recent work (Gérard-Varet et al. in Anal PDE 13(5):1417–1455, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495–512 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Dalibard, A.-L., Dietert, H., Gérard-Varet, D., Marbach, F.: High frequency analysis of the unsteady interactive boundary layer model. SIAM J. Math. Anal. 50(4), 4203–4245 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dietert, H., Gérard-Varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. PDE 5(1), 8 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dietert, H., Gerard-Varet, D.: On the ill-posedness of the triple deck model. SIAM J. Math. Anal.(2021) (in press)

  5. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gérard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2-dimensional Navier–Stokes flows. Duke Math. J. 167(13), 2531–2631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Optimal Prandtl expansion around concave boundary layer. Anal. PDE (2020) (in press)

  8. Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1273–1325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gérard-Varet, D., Masmoudi, N., Vicol, V.: Well-posedness of the hydrostatic Navier–Stokes equations. Anal. PDE 13(5), 1417–1455 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gérard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Grenier, E.: On the stability of boundary layers of incompressible Euler equations. J. Differ. Equ. 164(1), 180–222 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165, 3085–3146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y., Nguyen, T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220(2), 809–848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iyer, S.: On global-in-\(x\) stability of Blasius profiles. Arch. Ration. Mech. Anal. 237(2), 951–998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iyer, S., Vicol, V.: Real analytic local well-posedness for the triple deck. Commun. Pure Appl. Math. 74(8), 1641–1684 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.K.: On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lagree, P.-Y.: Notes on the triple deck. http://www.lmm.jussieu.fr/ lagree/COURS/CISM/TriplePont_CISM.pdf (2020)

  20. Li, W.-X., Masmoudi, N., Yang, T.: Well-posedness in Gevrey function space for 3d Prandtl equations without structural assumption. arXiv:2001.10222 (2020)

  21. Lighthill, M.J.: On boundary layers and upstream influence ii. Supersonic flows without separation. Proc. R. Soc. A Math. Phys. Eng. Sci. 217(1131), 478–507 (1953)

    MATH  ADS  Google Scholar 

  22. Lin, Q., Liu, X., Titi, E.: On the effect of fast rotation and vertical viscosity on the lifespan of the 3d primitive equations. arXiv:2203.04922 (2022)

  23. Masmoudi, N., Wong, T.K.: On the \(H^s\) theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Paicu, M., Zhang, P.: Global existence and the decay of solutions to the Prandtl system with small analytic data. Arch. Ration. Mech. Anal. 241(1), 403–446 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Paicu, M., Zhang, P., Zhang, Z.: On the hydrostatic approximation of the Navier–Stokes equations in a thin strip. Adv. Math. 372, 107293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Renardy, M.: Ill-posedness of the hydrostatic Euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 194(3), 877–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Stewartson, K.: On the flow near the trailing edge of a flat plate ii. Mathematika 16(1), 106–121 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, P., Zhang, Z.: Long time well-posedness of Prandtl system with small and analytic initial data. J. Funct. Anal. 270(7), 2591–2615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

SI acknowledges support from NSF Grant DMS-2306528 and NSF Grant DMS-1802940 when this project was initiated. D.G-V. acknowledges the support of SingFlows project, Grant ANR-18- CE40-0027 of the French National Research Agency (ANR) and of the Institut Universitaire de France. YM acknowledges the support of JSPS KAKENHI Grant Number 20K03698, 19H05597, 20H00118, 21H00991, 21H04433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gerard-Varet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Feireisl

In memory of Antonín Novotný.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerard-Varet, D., Iyer, S. & Maekawa, Y. Improved Well-Posedness for the Triple-Deck and Related Models via Concavity. J. Math. Fluid Mech. 25, 69 (2023). https://doi.org/10.1007/s00021-023-00809-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00809-4

Navigation