Skip to main content
Log in

Invertibility Properties of Singular Integral Operators Associated with the Lamé and Stokes Systems on Infinite Sectors in Two Dimensions

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we establish sharp invertibility results for the elastostatics and hydrostatics single and double layer potential type operators acting on \(L^p(\partial \Omega )\), \(1<p<\infty \), whenever \(\Omega \) is an infinite sector in \({\mathbb {R}}^2\). This analysis is relevant to the layer potential treatment of a variety of boundary value problems for the Lamé system of elastostatics and the Stokes system of hydrostatics in the class of curvilinear polygons in two dimensions, such as the Dirichlet, the Neumann, and the Regularity problems. Mellin transform techniques are used to identify the critical integrability indices for which invertibility of these layer potentials fails. Computer-aided proofs are produced to further study the monotonicity properties of these indices relative to parameters determined by the aperture of the sector \(\Omega \) and the differential operator in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983). Translated from the German by Jon Rokne

  2. Awala, H., Mitrea, I., Mitrea, M.: On the spectra of singular integral operators in two dimensions. Preprint (2017)

  3. Bacuta, C., Bramble, J.H.: Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains. Z. Angew. Math. Phys. 54(5), 874–878, 2003. Special issue dedicated to Lawrence E. Payne

  4. Boyd, D.W.: Spectra of convolution operators. Acta Sci. Math. (Szeged) 35, 31–37 (1973)

    MATH  MathSciNet  Google Scholar 

  5. Coifman, R.R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur \(L^{2}\) pour les courbes lipschitziennes. Ann. Math. (2) 116(2), 361–387 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dahlberg, B.E.J., Kenig, C.E.: \(L^p\) estimates for the three-dimensional systems of elastostatics on Lipschitz domains. In: Analysis and Partial Differential Equations, volume 122 of Lecture Notes in Pure and Appl. Math. pp. 621–634. Dekker, New York (1990)

  7. Dahlberg, B.E.J., Kenig, C.E., Verchota, G.C.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57(3), 795–818 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahlberg, B.E.J., Kenig, C.E.: Hardy spaces and the Neumann problem in \(L^p\) for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3), 437–465 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dauge, M.: Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20(1), 74–97 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deuring, P.: The Stokes system in 3D-Lipschitz domains: a survey of recent results. In: Progress in Partial Differential Equations: The Metz Surveys, 4, volume 345 of Pitman Res. Notes Math. Ser., pp. 187–204. Longman, Harlow (1996)

  11. Deuring, P.: \(L^p\)-theory for the Stokes system in 3D domains with conical boundary points. Indiana Univ. Math. J. 47(1), 11–47 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fabes, E.B., Jodeit Jr., M., Lewis, J.E.: On the spectra of a Hardy kernel. J. Funct. Anal. 21(2), 187–194 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57(3), 769–793 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Forte Developer 7. C++ Interval Arithmetic Programming Reference. Sun Microsystems (2002). https://docs.oracle.com/cd/E19957-01/816-2465/816-2465.pdf

  15. Griewank, A.: Evaluating Derivatives, volume 19 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). Principles and Techniques of Algorithmic Differentiation

  16. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Scientific Computing—Theory, Algorithms and Programs: Basic Numerical Problems. Springer, New York (1995)

    MATH  Google Scholar 

  17. Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kilty, J.: The \(L^p\) Dirichlet problem for the Stokes system on Lipschitz domains. Indiana Univ. Math. J. 58(3), 1219–1234 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kohr, M., Wendland, W.L.: Variational boundary integral equations for the Stokes system. Appl. Anal. 85(11), 1343–1372 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kozlov, V.A., Maz’ya, V.G.: Spectral properties of operator pencils generated by elliptic boundary value problems in a cone. Funktsional. Anal. i Prilozhen. 22(2), 38–46, 96 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kozlov, V.A., Maz��ya, V.G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, volume 85 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2001)

  22. Kozlov, V.A., Maz’ya, V.G., Schwab, C.: On singularities of solutions to the Dirichlet problem of hydrodynamics near the vertex of a cone. J. Reine Angew. Math. 456, 65–97 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Kupradze, V.D.: Potential methods in the theory of elasticity. Translated from the Russian by H. Gutfreund. Translation edited by I. Meroz. Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York (1965)

  24. Kupradze, V.D., Gegelia, T.G., Basheleĭ shvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, volume 25 of North-Holland Series in Applied Mathematics and Mechanics. North-Holland Publishing Co., Amsterdam, Russian edition (1979). Edited by V. D. Kupradze

  25. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2. Gordon and Breach, Science Publishers, New York (1969)

  26. Lerch, M., Tischler, G., Von Gudenberg, J.W., Hofschuster, W., Krämer, W.: FILIB++, a fast interval library supporting containment computations. ACM Trans. Math. Softw. 32(2), 299–324 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lewis, J.E.: Layer potentials for elastostatics and hydrostatics in curvilinear polygonal domains. Trans. Am. Math. Soc. 320(1), 53–76 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mayboroda, S., Mitrea, M.: The Poisson problem for the Lamé system on low-dimensional Lipschitz domains. In: Integral Methods in Science and Engineering, pp. 137–160. Birkhäuser Boston, Boston, MA (2006)

  29. Maz’ya, V.G.: Boundary integral equations. In: Analysis, IV, volume 27 of Encyclopaedia Math. Sci., pp. 127–222. Springer, Berlin (1991)

  30. Maz’ya, V.G., Plamenevskiĭ, B.A.: On properties of solutions of three-dimensional problems of elasticity theory and hydrodynamics in domains with isolated singular points. Am. Math. Soc. Transl. (2) 123, 109–123 (1984)

    MATH  Google Scholar 

  31. Maz’ya, V.G., Roßmann, J.: Weighted \(L_p\) estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains. ZAMM Z. Angew. Math. Mech. 83(7), 435–467 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. (2) 3, 5–7 (1940)

    MATH  MathSciNet  Google Scholar 

  33. Mitrea, D.: Distributions, Partial Differential Equations, and Harmonic Analysis. Springer, New York (2013)

    Book  MATH  Google Scholar 

  34. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque, (344), viii+241 (2012)

  35. Moore, R.E.: Interval Analysis. Prentice-Hall, Inc., Englewood Cliffs (1966)

    MATH  Google Scholar 

  36. Moore, R.E.: Methods and Applications of Interval Analysis, volume 2 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1979)

  37. Neumaier, A.: Interval Methods for Systems of Equations, volume 37 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990)

  38. Oberhettinger, F.: Tables of Mellin Transforms. Springer, New York (1974)

    Book  MATH  Google Scholar 

  39. Rudin, W.: Fourier Analysis on Groups. Wiley Classics Library. Wiley, New York (1990). Reprint of the 1962 original, A Wiley-Interscience Publication

  40. Rump, S.M.: INTLAB—INTerval LABoratory, pp. 77–104. Springer, Dordrecht (1999)

  41. Shen, Z.W.: Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier–Stokes equations in Lipschitz cylinders. Am. J. Math. 113(2), 293–373 (1991)

    Article  MATH  Google Scholar 

  42. Shen, Z.W.: A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc. Am. Math. Soc. 123(3), 801–811 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Mitrea.

Additional information

This work was supported in part by the SQuaRE program at the American Institute of Mathematics, by the NSF DMS Grant 1458138, the Simons Foundation Grant 318658, and the Swedish Research Council Grant 2008-7510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrea, I., Ott, K. & Tucker, W. Invertibility Properties of Singular Integral Operators Associated with the Lamé and Stokes Systems on Infinite Sectors in Two Dimensions. Integr. Equ. Oper. Theory 89, 151–207 (2017). https://doi.org/10.1007/s00020-017-2396-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2396-4

Mathematics Subject Classification

Keywords

Navigation