Skip to main content
Log in

Obstacles with non-trivial trapping sets in higher dimensions

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Using a well-known example of Livshits, for every \({n > 2}\) we construct obstacles K in \({\mathbb{R}^n}\) such that the set of trapped points for the billiard flow in the exterior of K has a non-empty interior, and therefore a positive Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsch M.: Differential Topology. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  2. L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. III, Springer, Berlin, 1985.

  3. Lax P., Phillips R.: Scattering Theory. Academic Press, Amsterdam (1967)

    MATH  Google Scholar 

  4. Melrose R.: Geometric Scattering Theory. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Melrose R., Sjöstrand J.: Singularities in boundary value problems I. Comm. Pure Appl. Math. 31, 593–617 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Melrose R., Sjöstrand J.: Singularities in boundary value problems II. Comm. Pure Appl. Math. 35, 129–168 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Noakes L., Stoyanov L.: Rigidity of scattering lengths and traveling times for disjoint unions of convex bodies. Proc. Amer. Math. Soc. 143, 3879–3893 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Noakes L., Stoyanov L.: Traveling times in scattering by obstacles. J. Math. Anal. Appl. 430, 703–717 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley & Sons, Chichester, 1992.

  10. Stoyanov L.: Generalized Hamiltonian flow and Poisson relation for the scattering kernel. Ann. Sci. École. Norm. Sup. 33, 361–382 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Stoyanov L.: Rigidity of the scattering length spectrum. Math. Ann. 324, 743–771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Stoyanov, Stability of trapping sets of positive measure, Preprint, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luchezar Stoyanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noakes, L., Stoyanov, L. Obstacles with non-trivial trapping sets in higher dimensions. Arch. Math. 107, 73–80 (2016). https://doi.org/10.1007/s00013-016-0907-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0907-1

Mathematics Subject Classification

Keywords

Navigation