Skip to main content
Log in

A ground state for the causal diamond in 2 dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We apply a recent proposal for a distinguished ground state of a quantum field in a globally hyperbolic spacetime to the free massless scalar field in a causal diamond in two-dimensional Minkowski space. We investigate the two limits in which the Wightman function is evaluated (i) for pairs of points that lie in the centre of the diamond (i.e. far from the boundaries), and (ii) for pairs of points that are close to the left or right corner. We find that in the centre, the Minkowski vacuum state is recovered, with a definite value of the infrared cutoff. Interestingly, the ground state is not the Rindler vacuum in the corner of the diamond, as might have been expected, but is instead the vacuum of a flat space in the presence of a static mirror on that corner. We confirm these results by numerically evaluating the Wightman function of a massless scalar field on a causal set corresponding to the continuum causal diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fulling, Aspects of quantum field theory in curved spacetime, London Mathematical Society Student Texts volume 17, London U.K. (1989).

  2. R.M. Wald, The formulation of quantum field theory in curved spacetime, arXiv:0907.0416 [INSPIRE].

  3. R.D. Sorkin, Scalar field theory on a causal set in histories form, J. Phys. Conf. Ser. 306 (2011)012017 [arXiv:1107.0698] [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Afshordi, S. Aslanbeigi and R.D. Sorkin, A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features and cosmology, JHEP 08 (2012) 137 [arXiv:1205.1296] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Johnston, Feynman propagator for a free scalar field on a causal set, Phys. Rev. Lett. 103 (2009)180401 [arXiv:0909.0944] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S.P. Johnston, Quantum fields on causal sets, arXiv:1010.5514 [INSPIRE].

  7. C.J. Fewster and R. Verch, On a recent construction ofvacuum-likequantum field states in curved spacetime, Class. Quant. Grav. 29 (2012) 205017 [arXiv:1206.1562] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.R. Coleman, There are no Goldstone bosons in two dimensions, Commun. Math. Phys. 31 (1973)259 .

    Article  ADS  MATH  Google Scholar 

  9. E. Abdalla, M. Abdalla and K. Rothe, Non-perturbative methods in 2 dimensional quantum field theory, World Scientific, Singapore (1991).

    Book  Google Scholar 

  10. M. Faber and A. Ivanov, On the ground state of a free massless (pseudo)scalar field in two-dimensions, hep-th/0212226 [INSPIRE].

  11. W. Rindler, Kruskal space and the uniformly accelerated frame, Amer. J. Phys. 34 (1966) 1174.

    Article  ADS  Google Scholar 

  12. W. Rindler, Relativity: special, general, and cosmological, Oxford University Press, Oxofrd U.K. (2006).

    Google Scholar 

  13. S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time, Phys. Rev. D 7 (1973) 2850 [INSPIRE].

    ADS  Google Scholar 

  14. P. Davies, Scalar particle production in Schwarzschild and Rindler metrics, J. Phys. A 8 (1975)609 .

    ADS  Google Scholar 

  15. W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  16. N. Bogoliubov, D. Shirkov, and E. Henley, Introduction to the theory of quantized fields, Physics Today 13 (1960) 40.

    Article  Google Scholar 

  17. M. Stone, Linear transformations in Hilbert space and their applications to analysis, American Mathematical Society, U.S.A. (1979).

    Google Scholar 

  18. M. Speigel, The summation of series involving roots of transcendental equations and related applications, J. Appl. Phys. 24 (1953) 1103 .

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Birrell and P. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1984).

    MATH  Google Scholar 

  20. P. Davies and S. Fulling, Radiation from a moving mirror in two-dimensional space-time conformal anomaly, Proc. Roy. Soc. Lond. A 348 (1976) 393 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. L. Bombelli, J. Lee, D. Meyer and R. Sorkin, Space-time as a causal set, Phys. Rev. Lett. 59 (1987)521 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. R.D. Sorkin, Causal sets: Discrete gravity, in Lectures on quantum gravity, proceedings of the Valdivia Summer School, Valdivia, Chile, January 2002, A. Gomberoff and D. Marolf eds., Plenum, U.S.A. (2005), gr-qc/0309009 [INSPIRE].

    Google Scholar 

  23. J. Henson, The causal set approach to quantum gravity, in Approaches to quantum gravity: towards a new understanding of space and time, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2006), gr-qc/0601121 [INSPIRE].

    Google Scholar 

  24. L. Bombelli, J. Henson and R.D. Sorkin, Discreteness without symmetry breaking: a theorem, Mod. Phys. Lett. A 24 (2009) 2579 [gr-qc/0605006] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. R.D. Sorkin, Does locality fail at intermediate length-scales, in Approaches to quantum gravity: towards a new understanding of space and time, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2006), gr-qc/0703099 [INSPIRE].

    Google Scholar 

  26. S. Johnston, Particle propagators on discrete spacetime, Class. Quant. Grav. 25 (2008) 202001 [arXiv:0806.3083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Dirac, The lagrangian in quantum mechanics, Phys. Zeit. Sooviet Un. 3 (1933) 64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasaman K. Yazdi.

Additional information

ArXiv ePrint: 1207.7101

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afshordi, N., Buck, M., Dowker, F. et al. A ground state for the causal diamond in 2 dimensions. J. High Energ. Phys. 2012, 88 (2012). https://doi.org/10.1007/JHEP10(2012)088

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)088

Keywords

Navigation