Skip to main content
Log in

The Hawking-Page crossover in noncommutative anti-deSitter space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the problem of a Schwarzschild-anti-deSitter black hole in a non-commutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement “critical point” in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  4. J. Polchinski, Introduction to gauge/gravity duality, arXiv:1010.6134 [SPIRES].

  5. S.W. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  7. C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Bonanno and M. Reuter, Renormalization group improved black hole spacetimes, Phys. Rev. D 62 (2000) 043008 [hep-th/0002196] [SPIRES].

    ADS  Google Scholar 

  9. L. Modesto, Disappearance of black hole singularity in quantum gravity, Phys. Rev. D 70 (2004) 124009 [gr-qc/0407097] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  10. P. Nicolini, A model of radiating black hole in noncommutative geometry, J. Phys. A 38 (2005) L631 [hep-th/0507266] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  11. L. Modesto, J.W. Moffat and P. Nicolini, Black holes in an ultraviolet complete quantum gravity, Phys. Lett. B 695 (2011) 397 [arXiv:1010.0680] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. R.B. Mann and P. Nicolini, Cosmological production of noncommutative black holes, arXiv:1102.5096 [SPIRES].

  13. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  14. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  15. P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J. Mod. Phys. A 24 (2009) 1229 [arXiv:0807.1939] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  16. A. Smailagic and E. Spallucci, Feynman path integral on the noncommutative plane, J. Phys. A 36 (2003) L467 [hep-th/0307217] [SPIRES]..

    ADS  MathSciNet  Google Scholar 

  17. A. Smailagic and E. Spallucci, UV divergence-free QFT on noncommutative plane, J. Phys. A 36 (2003) L517 [hep-th/0308193] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  18. A. Smailagic and E. Spallucci, Lorentz invariance and unitarity in UV -finiteness of QFT on noncommutative spacetime, J. Phys. A 37 (2004) 1 [hep-th/0406174] [SPIRES].

    MathSciNet  Google Scholar 

  19. E. Spallucci, A. Smailagic and P. Nicolini, Trace anomaly in quantum spacetime manifold, Phys. Rev. D 73 (2006) 084004 [hep-th/0604094] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  20. R. Banerjee, S. Gangopadhyay and S.K. Modak, Voros product, noncommutative Schwarzschild black hole and corrected area law, Phys. Lett. B 686 (2010) 181 [arXiv:0911.2123] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  21. P. Nicolini, A. Smailagic and E. Spallucci, The fate of radiating black holes in noncommutative geometry, ESA Spec. Publ. 637 (2006) 11.1 [hep-th/0507226] [SPIRES].

    Google Scholar 

  22. L. Modesto, Loop quantum black hole, Class. Quant. Grav. 23 (2006) 5587 [gr-qc/0509078] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. L. Modesto, Gravitational collapse in loop quantum gravity, Int. J. Theor. Phys. 47 (2008) 357 [gr-qc/0610074] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Modesto, Semiclassical loop quantum black hole, Int. J. Theor. Phys. 49 (2010) 1649 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Bonanno and M. Reuter, Quantum gravity effects near the null black hole singularity, Phys. Rev. D 60 (1999) 084011 [gr-qc/9811026] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. A. Bonanno and M. Reuter, Spacetime structure of an evaporating black hole in quantum gravity, Phys. Rev. D 73 (2006) 083005 [hep-th/0602159] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  27. J.W. Moffat, Ultraviolet complete quantum gravity, Eur. Phys. J. Plus 126 (2011) 43 [arXiv:1008.2482] [SPIRES].

    Article  Google Scholar 

  28. P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired Schwarzschild black hole, Phys. Lett. B 632 (2006) 547 [gr-qc/0510112] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  29. T.G. Rizzo, Noncommutative inspired black holes in extra dimensions, JHEP 09 (2006) 021 [hep-ph/0606051] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired charged black holes, Phys. Lett. B 645 (2007) 261 [gr-qc/0612035] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  31. R. Casadio and P. Nicolini, The decay-time of non-commutative micro-black holes, JHEP 11 (2008) 072 [arXiv:0809.2471] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Spallucci, A. Smailagic and P. Nicolini, Pair creation by higher dimensional, regular, charged, micro black holes, Phys. Lett. B 670 (2009) 449 [arXiv:0801.3519] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  33. I. Arraut, D. Batic and M. Nowakowski, A non commutative model for a mini black hole, Class. Quant. Grav. 26 (2009) 245006.

    Article  ADS  MathSciNet  Google Scholar 

  34. I. Arraut, D. Batic and M. Nowakowski, Maximal extension of the Schwarzschild spacetime inspired by noncommutative geometry, J. Math. Phys. 51 (2010) 022503 [arXiv:1001.2226] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Nicolini and E. Spallucci, Noncommutative geometry inspired dirty black holes, Class. Quant. Grav. 27 (2010) 015010.

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Smailagic and E. Spallucci, ‘Kerrr’ black hole: the lord of the string, Phys. Lett. B 688 (2010) 82 [arXiv:1003.3918] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  37. D.M. Gingrich, Noncommutative geometry inspired black holes in higher dimensions at the LHC, JHEP 05 (2010) 022 [arXiv:1003.1798] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Modesto and P. Nicolini, Charged rotating noncommutative black holes, Phys. Rev. D 82 (2010) 104035 [arXiv:1005.5605] [SPIRES].

    ADS  Google Scholar 

  39. J.R. Mureika and P. Nicolini, Aspects of noncommutative (1+ 1)-dimensional black holes, Phys. Rev. D 84 (2011) 044020 [arXiv:1104.4120] [SPIRES].

    ADS  Google Scholar 

  40. R. Garattini and F.S.N. Lobo, Self-sustained traversable wormholes in noncommutative geometry, Phys. Lett. B 671 (2009) 146 [arXiv:0811.0919] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  41. J.J. Oh and C. Park, Gravitational collapse of the shells with the smeared gravitational source in noncommutative geometry, JHEP 03 (2010) 086 [arXiv:0906.4428] [SPIRES].

    Article  ADS  Google Scholar 

  42. J.W. Moffat, Noncommutative quantum gravity, Phys. Lett. B 491 (2000) 345 [hep-th/0007181] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  43. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  44. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  45. T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes, Class. Quant. Grav. 19 (2002) 5387 [gr-qc/0204019] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. P. Nicolini, Entropic force, noncommutative gravity and ungravity, Phys. Rev. D 82 (2010) 044030 [arXiv:1005.2996] [SPIRES].

    ADS  Google Scholar 

  47. K. Huang, Statistical mechanics, John Wiley and Sons, New York, U.S.A. (1987).

  48. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Mia, K. Dasgupta, C. Gale and S. Jeon, Five easy pieces: the dynamics of quarks in strongly coupled plasmas, Nucl. Phys. B 839 (2010) 187 [arXiv:0902.1540] [SPIRES].

    Article  ADS  Google Scholar 

  50. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  51. S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  52. U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved holographic QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461] [SPIRES].

    Article  Google Scholar 

  53. J. Noronha, Connecting Polyakov loops to the thermodynamics of SU(N c ) gauge theories using the gauge-string duality, Phys. Rev. D 81 (2010) 045011 [arXiv:0910.1261] [SPIRES].

    ADS  Google Scholar 

  54. A.M. Polyakov, Thermal properties of gauge fields and quark liberation, Phys. Lett. B 72 (1978) 477 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  55. L.D. McLerran and B. Svetitsky, Quark liberation at high temperature: a Monte Carlo study of SU(2) gauge theory, Phys. Rev. D 24 (1981) 450 [SPIRES].

    ADS  Google Scholar 

  56. Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [SPIRES].

    Article  ADS  Google Scholar 

  57. A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [SPIRES].

    ADS  Google Scholar 

  58. D.J. Gross and E. Witten, Possible third order phase transition in the large-N lattice gauge theory, Phys. Rev. D 21 (1980) 446 [SPIRES].

    ADS  Google Scholar 

  59. R. Penrose, The question of cosmic censorship, J. Astrophys. Astron. 20 (1999) 233 [SPIRES].

    Article  ADS  Google Scholar 

  60. L. Álvarez-Gaumé, F. Meyer and M.A. Vazquez-Mozo, Comments on noncommutative gravity, Nucl. Phys. B 753 (2006) 92 [hep-th/0605113] [SPIRES].

    Article  ADS  Google Scholar 

  61. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  62. E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  63. I.R. Klebanov, Nuclear matter in the Skyrme model, Nucl. Phys. B 262 (1985) 133 [SPIRES].

    Article  ADS  Google Scholar 

  64. S. Lottini and G. Torrieri, Quarkyonic percolation at finite number of colors, arXiv:1103.4824 [SPIRES].

  65. L. Bonanno and F. Giacosa, Does nuclear matter bind at large-N c ?, Nucl. Phys. A 859 (2011) 49 [arXiv:1102.3367] [SPIRES].

    ADS  Google Scholar 

  66. G. Torrieri and I. Mishustin, The nuclear liquid-gas phase transition at large-N c in the Van der Waals approximation, Phys. Rev. C 82 (2010) 055202 [arXiv:1006.2471] [SPIRES].

    ADS  Google Scholar 

  67. J. Noronha, M. Gyulassy and G. Torrieri, Conformal holography of bulk elliptic flow and heavy quark quenching in relativistic heavy ion collisions, Phys. Rev. C 82 (2010) 054903 [arXiv:1009.2286] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Nicolini.

Additional information

ArXiv ePrint:1105.0188

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolini, P., Torrieri, G. The Hawking-Page crossover in noncommutative anti-deSitter space. J. High Energ. Phys. 2011, 97 (2011). https://doi.org/10.1007/JHEP08(2011)097

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)097

Keywords

Navigation