Skip to main content
Log in

On the universality of inner black hole mechanics and higher curvature gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Black holes are famous for their universal behavior. New thermodynamic relations have been found recently for the product of gravitational entropies over all the horizons of a given stationary black hole. This product has been found to be independent of the mass for all such solutions of Einstein-Maxwell theory in d = 4, 5. We study the universality of this mass independence by introducing a number of possible higher curvature corrections to the gravitational action. We consider finite temperature black holes with both asymptotically flat and (A)dS boundary conditions. Although we find examples for which mass independence of the horizon entropy product continues to hold, we show that the universality of this property fails in general. We also derive further thermodynamic properties of inner horizons, such as the first law and Smarr relation, in the higher curvature theories under consideration, as well as a set of relations between thermodynamic potentials on the inner and outer horizons that follow from the horizon entropy product, whether or not it is mass independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. M. Cvetič, G. Gibbons and C. Pope, Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].

    ADS  Google Scholar 

  6. S. Detournay, Inner Mechanics of 3d Black Holes, Phys. Rev. Lett. 109 (2012) 031101 [arXiv:1204.6088] [INSPIRE].

    Article  ADS  Google Scholar 

  7. B. Chen, S.-X. Liu and J.-J. Zhang, Thermodynamics of Black Hole Horizons and Kerr/CFT Correspondence, JHEP 11 (2012) 017 [arXiv:1206.2015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. B. Chen, Z. Xue and J.-J. Zhang, Note on Thermodynamic Method of Black Hole/CFT Correspondence, JHEP 03 (2013) 102 [arXiv:1301.0429] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Castro, J.M. Lapan, A. Maloney and M.J. Rodriguez, Black Hole Monodromy and Conformal Field Theory, arXiv:1303.0759 [INSPIRE].

  10. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. F. Larsen, A string model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].

    ADS  Google Scholar 

  12. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. Curir, Spin entropy of a rotating black hole, Nuovo Cimento B 51 (1979) 262.

    ADS  Google Scholar 

  16. A. Curir and M. Francaviglia, Spin thermodynamics of a Kerr black hole, Nuovo Cimento B 52 (1979) 165.

    ADS  Google Scholar 

  17. M. Ansorg and J. Hennig, The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter, Class. Quant. Grav. 25 (2008) 222001 [arXiv:0810.3998] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Ansorg and J. Hennig, The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory, Phys. Rev. Lett. 102 (2009) 221102 [arXiv:0903.5405] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Meessen, T. Ortín, J. Perz and C. Shahbazi, Black holes and black strings of N = 2, D = 5 supergravity in the H-FGK formalism, JHEP 09 (2012) 001 [arXiv:1204.0507] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Visser, Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole, JHEP 06 (2012) 023 [arXiv:1204.3138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. V. Faraoni and A.F.Z. Moreno, Are quantization rules for horizon areas universal?, arXiv:1208.3814 [INSPIRE].

  22. C. Toldo and S. Vandoren, Static nonextremal AdS4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav. 30 (2013) 065003 [arXiv:1211.1618] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Visser, Area products for black hole horizons, arXiv:1205.6814 [INSPIRE].

  25. A. Gnecchi and C. Toldo, On the non-BPS first order flow in N = 2 U(1)-gauged Supergravity, JHEP 03 (2013) 088 [arXiv:1211.1966] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  28. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett. B 471 (2000) 358 [gr-qc/9909061] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. R.K. Gupta and A. Sen, Consistent Truncation to Three Dimensional (Super-)gravity, JHEP 03 (2008) 015 [arXiv:0710.4177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. B. Chen, J.-j. Zhang, J.-d. Zhang and D.-l. Zhong, Aspects of Warped AdS 3 /CFT 2 Correspondence, JHEP 04 (2013) 055 [arXiv:1302.6643] [INSPIRE].

    Article  ADS  Google Scholar 

  33. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Clement, Warped AdS 3 black holes in new massive gravity, Class. Quant. Grav. 26 (2009) 105015 [arXiv:0902.4634] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Sheykhi, Higher-dimensional charged f(R) black holes, Phys. Rev. D 86 (2012) 024013 [arXiv:1209.2960] [INSPIRE].

    ADS  Google Scholar 

  36. T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. T. Moon, Y.S. Myung and E.J. Son, f(R) black holes, Gen. Rel. Grav. 43 (2011) 3079 [arXiv:1101.1153] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Cvetič, G. Gibbons, D. Kubiznak and C. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].

    ADS  Google Scholar 

  41. B.P. Dolan, D. Kastor, D. Kubiznak, R.B. Mann and J. Traschen, Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes, arXiv:1301.5926 [INSPIRE].

  42. D. Kastor, S. Ray and J. Traschen, Mass and Free Energy of Lovelock Black Holes, Class. Quant. Grav. 28 (2011) 195022 [arXiv:1106.2764] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. I. Okamoto and O. Kaburaki, Theinner-horizon thermodynamicsof Kerr black holes, Mon. Not. Roy. Astron. Soc. 255 (1992) 539.

    ADS  Google Scholar 

  44. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].

    Article  ADS  Google Scholar 

  46. J.T. Wheeler, Symmetric Solutions to the Gauss-Bonnet Extended Einstein Equations, Nucl. Phys. B 268 (1986) 737 [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Charmousis, Higher order gravity theories and their black hole solutions, Lect. Notes Phys. 769 (2009) 299 [arXiv:0805.0568] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. C. Garraffo and G. Giribet, The Lovelock Black Holes, Mod. Phys. Lett. A 23 (2008) 1801 [arXiv:0805.3575] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. D.L. Wiltshire, Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term, Phys. Lett. B 169 (1986) 36 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. D.L. Wiltshire, Black holes in string generated gravity models, Phys. Rev. D 38 (1988) 2445 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. A. Castro, J.L. Davis, P. Kraus and F. Larsen, String Theory Effects on Five-Dimensional Black Hole Physics, Int. J. Mod. Phys. A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. M. Dehghani, Charged rotating black branes in anti-de Sitter Einstein-Gauss-Bonnet gravity, Phys. Rev. D 67 (2003) 064017 [hep-th/0211191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. G. Gibbons and P. Townsend, Self-gravitating Yang Monopoles in all Dimensions, Class. Quant. Grav. 23 (2006) 4873 [hep-th/0604024] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaston Giribet.

Additional information

ArXiv ePrint: 1304.1696

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, A., Dehmami, N., Giribet, G. et al. On the universality of inner black hole mechanics and higher curvature gravity. J. High Energ. Phys. 2013, 164 (2013). https://doi.org/10.1007/JHEP07(2013)164

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)164

Keywords

Navigation