Skip to main content
Log in

Intersections of thick center vortices, Dirac eigenmodes and fractional topological charge in SU(2) lattice gauge theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Intersections of thick, plane SU(2) center vortices are characterized by the topological charge |Q| = 1/2. We compare such intersections with the distribution of zeromodes of the Dirac operator in the fundamental and adjoint representation using both the overlap and asqtad staggered fermion formulations in SU(2) lattice gauge theory. We analyze configurations with four intersections and find that the probability density distribution of fundamental zeromodes in the intersection plane differs significantly from the one obtained analytically in [1]. The Dirac eigenmodes are clearly sensitive to the traces of the Polyakov (Wilson) lines and do not exactly locate topological charge contributions. Although, the adjoint Dirac operator is able to produce zeromodes for configurations with topological charge |Q| = 1/2, they do not locate single vortex intersections, as we prove by forming arbitrary linear combinations of these zeromodes — their scalar density peaks at least at two intersection points. With pairs of thin and thick vortices we realize a situation similar to configurations with topological charge |Q| = 1/2. For such configurations the zeromodes do not localize in the regions of fractional topological charge contribution but spread over the whole lattice, avoiding regions of negative traces of Polyakov lines. This sensitivity to Polyakov lines we also confirm for single vortex-pairs, i.e., configurations with nontrivial Polyakov loops but without topological charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Reinhardt, O. Schroeder, T. Tok and V.C. Zhukovsky, Quark zero modes in intersecting center vortex gauge fields, Phys. Rev. D 66 (2002) 085004 [hep-th/0203012] [SPIRES].

    ADS  Google Scholar 

  2. A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. A. Actor, Classical solutions of SU(2) Yang-Mills theories, Rev. Mod. Phys. 51 (1979) 461 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [SPIRES].

    ADS  Google Scholar 

  5. C.W. Bernard, Gauge zero modes, instanton determinants and quantum-chromodynamic calculations, Phys. Rev. D 19 (1979) 3013 [SPIRES].

    ADS  Google Scholar 

  6. M.F. Atiyah and I.M. Singer, The index of elliptic operators. 5, Annals Math. 93 (1971) 139 [SPIRES].

    Article  MathSciNet  Google Scholar 

  7. A.S. Schwarz, On regular solutions of Euclidean Yang-Mills equations, Phys. Lett. B 67 (1977) 172 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. L.S. Brown, R.D. Carlitz and C.-k. Lee, Massless excitations in instanton fields, Phys. Rev. D 16 (1977) 417 [SPIRES].

    ADS  Google Scholar 

  9. R. Narayanan and H. Neuberger, A construction of lattice chiral gauge theories, Nucl. Phys. B 443 (1995) 305 [hep-th/9411108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. E.-M. Ilgenfritz and M. Muller-Preussker, Statistical mechanics of the interacting Yang-Mills instanton gas, Nucl. Phys. B 184 (1981) 443 [SPIRES].

    Article  ADS  Google Scholar 

  11. D. Diakonov and V.Y. Petrov, Chiral condensate in the instanton vacuum, Phys. Lett. B 147 (1984) 351 [SPIRES].

    ADS  Google Scholar 

  12. G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Vinciarelli, Fluxon solutions in nonabelian gauge models, Phys. Lett. B 78 (1978) 485 [SPIRES].

    ADS  Google Scholar 

  14. T. Yoneya, Z N topological excitations in Yang-Mills theories: duality and confinement, Nucl. Phys. B 144 (1978) 195 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. J.M. Cornwall, Quark confinement and vortices in massive gauge invariant QCD, Nucl. Phys. B 157 (1979) 392 [SPIRES].

    Article  ADS  Google Scholar 

  16. G. Mack and V.B. Petkova, Comparison of lattice gauge theories with gauge groups Z 2 and SU(2), Ann. Phys. 123 (1979) 442 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. H.B. Nielsen and P. Olesen, A quantum liquid model for the QCD vacuum: gauge and rotational invariance of domained and quantized homogeneous color fields, Nucl. Phys. B 160 (1979) 380 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. L. Del Debbio, M. Faber, J. Greensite and Š. Olejníık, Center dominance and Z 2 vortices in SU(2) lattice gauge theory, Phys. Rev. D 55 (1997) 2298 [hep-lat/9610005] [SPIRES].

    ADS  Google Scholar 

  19. T.G. Kovacs and E.T. Tomboulis, Vortices and confinement at weak coupling, Phys. Rev. D 57 (1998) 4054 [hep-lat/9711009] [SPIRES].

    ADS  Google Scholar 

  20. P. de Forcrand and M. D’Elia, On the relevance of center vortices to QCD, Phys. Rev. Lett. 82 (1999) 4582 [hep-lat/9901020] [SPIRES].

    Article  ADS  Google Scholar 

  21. C. Alexandrou, P. de Forcrand and M. D’Elia, The role of center vortices in QCD, Nucl. Phys. A 663 (2000) 1031 [hep-lat/9909005] [SPIRES].

    ADS  Google Scholar 

  22. M. Engelhardt, Center vortex model for the infrared sector of Yang-Mills theory: quenched Dirac spectrum and chiral condensate, Nucl. Phys. B 638 (2002) 81 [hep-lat/0204002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Höllwieser, M. Faber, J. Greensite, U.M. Heller and Š. Olejník, Center vortices and the Dirac spectrum, Phys. Rev. D 78 (2008) 054508 [arXiv:0805.1846] [SPIRES].

    ADS  Google Scholar 

  24. H. Reinhardt and M. Engelhardt, Center vortices in continuum Yang-Mills theory in Quark confinement and the hadron spectrum IV, W. Lucha and K.M. Maung eds., World Scientific, Singapore (2002) p. 150–162.

    Google Scholar 

  25. H. Reinhardt, Topology of center vortices, Nucl. Phys. B 628 (2002) 133 [hep-th/0112215] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. U.M. Heller, R.G. Edwards and R. Narayanan, Evidence for fractional topological charge in SU(2) pure Yang-Mills theory, Nucl. Phys. Proc. Suppl. 73 (1999) 497 [hep-lat/9810003] [SPIRES].

  27. M. Garcia Perez, A. Gonzalez-Arroyo and A. Sastre, Adjoint zero-modes as a tool to understand the Yang-Mills vacuum, PoS LAT2007 (2007) 328 [arXiv:0710.0455] [SPIRES].

    Google Scholar 

  28. H. Reinhardt and T. Tok, Merons and instantons in laplacian abelian and center gauges in continuum Yang-Mills theory, Phys. Lett. B 505 (2001) 131 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. F. Bruckmann, E.-M. Ilgenfritz, B. Martemyanov and B. Zhang, The vortex structure of SU(2) calorons, Phys. Rev. D 81 (2010) 074501 [arXiv:0912.4186] [SPIRES].

    ADS  Google Scholar 

  30. M. Engelhardt and H. Reinhardt, Center projection vortices in continuum Yang-Mills theory, Nucl. Phys. B 567 (2000) 249 [hep-th/9907139] [SPIRES].

    Article  MathSciNet  Google Scholar 

  31. R. Höllwieser, M. Faber and U.M. Heller, Lattice index theorem and fractional topological charge, arXiv:1005.1015 [SPIRES].

  32. G. Jordan, R. Höllwieser, M. Faber and U.M. Heller, Tests of the lattice index theorem, Phys. Rev. D 77 (2008) 014515 [arXiv:0710.5445] [SPIRES].

    ADS  Google Scholar 

  33. E.M. Ilgenfritz et al., Exploring the structure of the quenched QCD vacuum with overlap fermions, Phys. Rev. D 76 (2007) 034506 [arXiv:0705.0018] [SPIRES].

    ADS  Google Scholar 

  34. M.I. Polikarpov, F.V. Gubarev, S.M. Morozov and V.I. Zakharov, Localization of low lying eigenmodes for chirally symmetric Dirac operator, PoS LAT2005 (2006) 143 [hep-lat/0510098] [SPIRES].

    Google Scholar 

  35. MILC collaboration, C. Aubin et al., The scaling dimension of low lying Dirac eigenmodes and of the topological charge density, Nucl. Phys. Proc. Suppl. 140 (2005) 626 [hep-lat/0410024] [SPIRES].

    Article  ADS  Google Scholar 

  36. C. Bernard et al., More evidence of localization in the low-lying Dirac spectrum, PoS LAT2005 (2006) 299 [hep-lat/0510025] [SPIRES].

    Google Scholar 

  37. H. Falomir, R.E. Gamboa Saravi and E.M. Santangelo, Dirac operator on a disk with global boundary conditions, J. Math. Phys. 39 (1998) 532 [hep-th/9609194] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M. Garcia Perez, A. Gonzalez-Arroyo, C. Pena and P. van Baal, Weyl-Dirac zero-mode for calorons, Phys. Rev. D 60 (1999) 031901 [hep-th/9905016] [SPIRES].

    ADS  Google Scholar 

  39. F. Bruckmann, Topological objects in QCD, Eur. Phys. J. ST 152 (2007) 61 [arXiv:0706.2269] [SPIRES].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Höllwieser.

Additional information

ArXiv ePrint: 1103.2669

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höllwieser, R., Faber, M. & Heller, U.M. Intersections of thick center vortices, Dirac eigenmodes and fractional topological charge in SU(2) lattice gauge theory. J. High Energ. Phys. 2011, 52 (2011). https://doi.org/10.1007/JHEP06(2011)052

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)052

Keywords

Navigation