Skip to main content
Log in

Back reaction, covariant anomaly and effective action

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the presence of back reaction, we first produce the one-loop corrections for the event horizon and Hawking temperature of the Reissner-Nordström black hole. Then, based on the covariant anomaly cancelation method and the effective action technique, the modified expressions for the fluxes of gauge current and energy momentum tensor, due to the effect of back reaction, are obtained. The results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody at the temperature with quantum corrections, thus confirming the robustness of the covariant anomaly cancelation method and the effective action technique for black holes with back reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. S.P. Robinson and F. Wilczek, A relationship between Hawking radiation and gravitational anomalies, Phys. Rev. Lett. 95 (2005) 011303 [gr-qc/0502074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Iso, H. Umetsu and F. Wilczek, Hawking radiation from charged black holes via gauge and gravitational anomalies, Phys. Rev. Lett. 96 (2006) 151302 [hep-th/0602146] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Iso, H. Umetsu and F. Wilczek, Anomalies, Hawking radiations and regularity in rotating black holes, Phys. Rev. D 74 (2006) 044017 [hep-th/0606018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. S. Iso, Hawking radiation, gravitational anomaly and conformal symmetry - the origin of universalityx, Int. J. Mod. Phys. A 23 (2008) 2082 [arXiv:0804.0652] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. S. Iso, T. Morita and H. Umetsu, Quantum anomalies at horizon and Hawking radiations in Myers-Perry black holes, JHEP 04 (2007) 068 [hep-th/0612286] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Morita, Modification of gravitational anomaly method in Hawking radiation, Phys. Lett. B 677 (2009) 88 [arXiv:0902.3885] [SPIRES].

    ADS  Google Scholar 

  8. T. Morita, Hawking radiation and quantum anomaly in AdS 2/CFT 1 correspondence, JHEP 01 (2009) 037 [arXiv:0811.1741] [SPIRES].

    Article  ADS  Google Scholar 

  9. K. Umetsu, Ward identities in the derivation of Hawking radiation from anomalies, Prog. Theor. Phys. 119 (2008) 849 [arXiv:0804.0963] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  10. K. Murata and U. Miyamoto, Hawking radiation of a vector field and gravitational anomalies, Phys. Rev. D 76 (2007) 084038 [arXiv:0707.0168] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. U. Miyamoto and K. Murata, On Hawking radiation from black rings, Phys. Rev. D 77 (2008) 024020 [arXiv:0705.3150] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. K. Murata and J. Soda, Hawking radiation from rotating black holes and gravitational anomalies, Phys. Rev. D 74 (2006) 044018 [hep-th/0606069] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. H. Shin and W. Kim, Hawking radiation from non-extremal D1 − D5 black hole via anomalies, JHEP 06 (2007) 012 [arXiv:0705.0265] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. W. Kim and H. Shin, Anomaly analysis of Hawking radiation from acoustic black hole, JHEP 07 (2007) 070 [arXiv:0706.3563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. W. Kim, H. Shin and M. Yoon, Anomaly and Hawking radiation from regular black holes, arXiv:0803.3849 [SPIRES].

  16. M.R. Setare, Gauge and gravitational anomalies and Hawking radiation of rotating BTZ black holes, Eur. Phys. J. C 49 (2007) 865 [hep-th/0608080] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. E.C. Vagenas and S. Das, Gravitational anomalies, Hawking radiation and spherically symmetric black holes, JHEP 10 (2006) 025 [hep-th/0606077] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Das, S.P. Robinson and E.C. Vagenas, Gravitational anomalies: a recipe for Hawking radiation, Int. J. Mod. Phys. D 17 (2008) 533 [arXiv:0705.2233] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. Q.-Q. Jiang, S.-Q. Wu and X. Cai, Anomalies and de Sitter radiation from the generic black holes in de Sitter spaces, Phys. Lett. B 651 (2007) 65 [arXiv:0705.3871] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. Q.-Q. Jiang, S.-Q. Wu and X. Cai, Hawking radiation from the dilatonic black holes via anomalies, Phys. Rev. D 75 (2007) 064029 [hep-th/0701235] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. Q.-Q. Jiang, S.-Q. Wu and X. Cai, Hawking radiation from (2+1)-dimensional BTZ black holes, Phys. Lett. B 651 (2007) 58 [hep-th/0701048] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. Q.-Q. Jiang, Hawking radiation from black holes in de Sitter spaces, Class. Quant. Grav. 24 (2007) 4391 [arXiv:0705.2068] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  23. Q.-Q. Jiang and S.-Q. Wu, Hawking radiation from rotating black holes in anti-de Sitter spaces via gauge and gravitational anomalies, Phys. Lett. B 647 (2007) 200 [hep-th/0701002] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. S.-Q. Wu and J.-J. Peng, Hawking radiation from the Reissner-Nordstróm black hole with a global monopole via gravitational and gauge anomalies, Class. Quant. Grav. 24 (2007) 5123 [arXiv:0706.0983] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. X. Kui, W. Liu and H.-b. Zhang, Anomalies of the Achúcarro-Ortiz black hole, Phys. Lett. B 647 (2007) 482 [hep-th/0702199] [SPIRES].

    ADS  Google Scholar 

  26. Z. Xu and B. Chen, Hawking radiation from general Kerr-(anti)de Sitter black holes, Phys. Rev. D 75 (2007) 024041 [hep-th/0612261] [SPIRES].

    ADS  Google Scholar 

  27. C.-G. Huang, J.-R. Sun, X.-n. Wu and H.-Q. Zhang, Gravitational Anomaly and Hawking Radiation of Brane World Black Holes, Mod. Phys. Lett. A 23 (2008) 2957 [arXiv:0710.4766] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. X.-n. Wu, C.-G. Huang and J.-R. Sun, On gravitational anomaly and Hawking radiation near weakly isolated horizon, Phys. Rev. D 77 (2008) 124023 [arXiv:0801.1347] [SPIRES].

    ADS  Google Scholar 

  29. B. Chen and W. He, Hawking radiation of black rings from anomalies, Class. Quant. Grav. 25 (2008) 135011 [arXiv:0705.2984] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.-J. Peng and S.-Q. Wu, Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly, Chin. Phys. B 17 (2008) 825 [arXiv:0705.1225] [SPIRES].

    ADS  Google Scholar 

  31. R. Li, J.-R. Ren and S.-W. Wei, Gravitational anomaly and Hawking radiation of apparent horizon in FRW universe, Eur. Phys. J. C 62 (2009) 455 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S.-W. Wei, R. Li, Y.-X. Liu and J.-R. Ren, Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon, Eur. Phys. J. C 65 (2010) 281 [arXiv:0901.2614] [SPIRES].

    Article  ADS  Google Scholar 

  33. S.-W. Wei, R. Li, Y.-X. Liu and J.-R. Ren, Anomaly analysis of Hawking radiation from 2+1 dimensional spinning black hole, arXiv:0904.2915 [SPIRES].

  34. L. Bonora and M. Cvitan, Hawking radiation, W-infinity algebra and trace anomalies, JHEP 05 (2008) 071 [arXiv:0804.0198] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Becar, P. Gonzalez, G. Pulgar and J. Saavedra, Anomaly and Hawking radiation from Unruh’s and canonical acoustic black hole, arXiv:0808.1735 [SPIRES].

  36. L. Bonora, M. Cvitan, S. Pallua and I. Smolic, Hawking fluxes, W1 algebra and anomalies, JHEP 12 (2008) 021 [arXiv:0808.2360] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. V. Akhmedova, T. Pilling, A. de Gill and D. Singleton, Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation, Phys. Lett. B 673 (2009) 227 [arXiv:0808.3413] [SPIRES].

    ADS  Google Scholar 

  38. A.P. Porfyriadis, Hawking radiation via anomaly cancelation for the black holes of five-dimensional minimal gauged supergravity, Phys. Rev. D 79 (2009) 084039 [arXiv:0811.2822] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. A.P. Porfyriadis, Anomalies and Hawking fluxes from the black holes of topologically massive gravity, Phys. Lett. B 675 (2009) 235 [arXiv:0904.2042] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. R. Banerjee and B.R. Majhi, Connecting anomaly and tunneling methods for Hawking effect through chirality, Phys. Rev. D 79 (2009) 064024 [arXiv:0812.0497] [SPIRES].

    ADS  Google Scholar 

  41. E. Papantonopoulos and P. Skamagoulis, Hawking radiation via gravitational anomalies in non-spherical topologies, Phys. Rev. D 79 (2009) 084022 [arXiv:0812.1759] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. K. Fujikawa, Quantum anomalies and some recent developments, Int. J. Mod. Phys. A 24 (2009) 3306 [arXiv:0902.2066] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. S. Iso, T. Morita and H. Umetsu, Fluxes of higher-spin currents and Hawking radiations from charged black holes, Phys. Rev. D 76 (2007) 064015 [arXiv:0705.3494] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. S. Iso, T. Morita and H. Umetsu, Higher-spin currents and thermal flux from Hawking radiation, Phys. Rev. D 75 (2007) 124004 [hep-th/0701272] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. S. Iso, T. Morita and H. Umetsu, Higher-spin gauge and trace anomalies in two-dimensional backgrounds, Nucl. Phys. B 799 (2008) 60 [arXiv:0710.0453] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Iso, T. Morita and H. Umetsu, Hawking radiation via higher-spin gauge anomalies, Phys. Rev. D 77 (2008) 045007 [arXiv:0710.0456] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. R. Banerjee and S. Kulkarni, Hawking radiation and covariant anomalies, Phys. Rev. D 77 (2008) 024018 [arXiv:0707.2449] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. S. Gangopadhyay and S. Kulkarni, Hawking radiation in GHS and non-extremal D1 − D5 blackhole via covariant anomalies, Phys. Rev. D 77 (2008) 024038 [arXiv:0710.0974] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. R. Banerjee, Covariant Anomalies, Horizons and Hawking Radiation, Int. J. Mod. Phys. D 17 (2009) 2539 [arXiv:0807.4637] [SPIRES].

    ADS  Google Scholar 

  50. S. Gangopadhyay, Hawking radiation from black holes in de Sitter spaces via covariant anomalies, arXiv:0910.2079 [SPIRES].

  51. S. Nam and J.-D. Park, Hawking radiation from covariant anomalies in 2+1 dimensional black holes, Class. Quant. Grav. 26 (2009) 145015 [arXiv:0902.0982] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. J.-J. Peng and S.-Q. Wu, Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory, Gen. Rel. Grav. 40 (2008) 2619 [arXiv:0709.0167] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. J.-J. Peng and S.-Q. Wu, Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes, Phys. Lett. B 661 (2008) 300 [arXiv:0801.0185] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. S. Gangopadhyay, Hawking radiation in Reissner-Nordstróm blackhole with a global monopole via covariant anomalies and effective action, Phys. Rev. D 78 (2008) 044026 [arXiv:0803.3492] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. S.-Q. Wu, J.-J. Peng and Z.-Y. Zhao, Anomalies, effective action and Hawking temperatures of a Schwarzschild black hole in the isotropic coordinates, Class. Quant. Grav. 25 (2008) 135001 [arXiv:0803.1338] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. Q.-Q. Jiang and X. Cai, Covariant anomalies, effective action and Hawking radiation from Kerr-Goedel black hole, Phys. Lett. B 677 (2009) 179 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. R. Banerjee and S. Kulkarni, Hawking radiation, effective actions and covariant boundary conditions, Phys. Lett. B 659 (2008) 827 [arXiv:0709.3916] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. R. Banerjee and S. Kulkarni, Hawking radiation, covariant boundary conditions and vacuum states, Phys. Rev. D 79 (2009) 084035 [arXiv:0810.5683] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. S. Gangopadhyay, Hawking radiation in GHS blackhole, effective action and covariant boundary condition, Phys. Rev. D 77 (2008) 064027 [arXiv:0712.3095] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. R. Banerjee and B.R. Majhi, Quantum tunneling beyond semiclassical approximation, JHEP 06 (2008) 095 [arXiv:0805.2220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. S.K. Modak, Corrected entropy of BTZ black hole in tunneling approach, Phys. Lett. B 671 (2009) 167 [arXiv:0807.0959] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. B.R. Majhi, Fermion tunneling beyond semiclassical approximation, Phys. Rev. D 79 (2009) 044005 [arXiv:0809.1508] [SPIRES].

    ADS  Google Scholar 

  63. R. Banerjee, B.R. Majhi and D. Roy, Corrections to Unruh effect in tunneling formalism and mapping with Hawking effect, arXiv:0901.0466 [SPIRES].

  64. R. Banerjee, B.R. Majhi and E.C. Vagenas, Quantum tunneling and black hole spectroscopy, Phys. Lett. B 686 (2010) 279 [arXiv:0907.4271] [SPIRES].

    ADS  Google Scholar 

  65. J. Zhang, Black hole quantum tunnelling and black hole entropy correction, Phys. Lett. B 668 (2008) 353 [arXiv:0806.2441] [SPIRES].

    ADS  Google Scholar 

  66. J. Zhang, Black hole entropy, log correction and inverse area correction, Phys. Lett. B 675 (2009) 14 [SPIRES].

    ADS  Google Scholar 

  67. R.-G. Cai, L.-M. Cao and Y.-P. Hu, Corrected entropy-area relation and modified Friedmann equations, JHEP 08 (2008) 090 [arXiv:0807.1232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. T. Zhu, J.-R. Ren and M.-F. Li, Influence of generalized and extended uncertainty principle on thermodynamics of FRW universe, Phys. Lett. B 674 (2009) 204 [arXiv:0811.0212] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. T. Zhu and J.-R. Ren, Corrections to Hawking-like radiation for a Friedmann-Robertson-Walker universe, Eur. Phys. J. C 62 (2009) 413 [arXiv:0811.4074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  70. T. Zhu, J.-R. Ren and M.-F. Li, Corrected entropy of Friedmann-Robertson-Walker universe in tunneling method, JCAP 08 (2009) 010 [arXiv:0905.1838] [SPIRES].

    ADS  Google Scholar 

  71. T. Zhu, J.-R. Ren and M.-F. Li, Corrected entropy of high dimensional black holes, arXiv:0906.4194 [SPIRES].

  72. M.J. Wang, C.K. Ding, S.B. Chen and J.L. Jing, Is Hawking temperature modified by the quantum tunneling beyond semiclassical approximation, Gen. Rel. Grav. 42 (2009) 347.

    Article  ADS  Google Scholar 

  73. R. Banerjee and B.R. Majhi, Quantum tunneling, trace anomaly and effective metric, Phys. Lett. B 674 (2009) 218 [arXiv:0808.3688] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  74. R. Banerjee and S.K. Modak, Exact differential and corrected area law for stationary black holes in tunneling method, JHEP 05 (2009) 063 [arXiv:0903.3321] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. R. Banerjee and B.R. Majhi, Hawking black body spectrum from tunneling mechanism, Phys. Lett. B 675 (2009) 243 [arXiv:0903.0250] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  76. R. Banerjee and S.K. Modak, Quantum tunneling, blackbody spectrum and non-logarithmic entropy correction for lovelock black holes, JHEP 11 (2009) 073 [arXiv:0908.2346] [SPIRES].

    Article  ADS  Google Scholar 

  77. C.O. Lousto and N.G. Sanchez, Back reaction effects in black hole space-times, Phys. Lett. B 212 (1988) 411 [SPIRES].

    ADS  Google Scholar 

  78. C.G. Huang, Thermal stress-energy tensor of a scalar field in Reissner-Nordström space-time, Phys. Lett. A 164 (1992) 384.

    ADS  Google Scholar 

  79. D.V. Fursaev, Temperature and entropy of a quantum black hole and conformal anomaly, Phys. Rev. D 51 (1995) 5352 [hep-th/9412161] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  80. R.B. Mann and S.N. Solodukhin, Universality of quantum entropy for extreme black holes, Nucl. Phys. B 523 (1998) 293 [hep-th/9709064] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. D.N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7 (2005) 203 [hep-th/0409024] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  82. R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett. 84 (2000) 5255 [gr-qc/0002040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. S. Kloster, J. Brannlund and A. DeBenedictis, Phase-space and black hole entropy of higher genus horizons in loop quantum gravity, Class. Quant. Grav. 25 (2008) 065008 [gr-qc/0702036] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  84. S. Das, P. Majumdar and R.K. Bhaduri, General logarithmic corrections to black hole entropy, Class. Quant. Grav. 19 (2002) 2355 [hep-th/0111001] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. S.S. More, Higher order corrections to black hole entropy, Class. Quant. Grav. 22 (2005) 4129 [gr-qc/0410071] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. S. Mukherji and S.S. Pal, Logarithmic corrections to black hole entropy and AdS/CFT correspondence, JHEP 05 (2002) 026 [hep-th/0205164] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  87. S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175 [gr-qc/0005017] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. M.R. Setare, Logarithmic correction to the Cardy-Verlinde formula in Achúcarro-Ortiz black hole, Eur. Phys. J. C 33 (2004) 555 [hep-th/0309134] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  89. H. Leutwyler, Gravitational anomalies: a soluble two-dimensional model, Phys. Lett. B 153 (1985) 65 [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Quan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, QQ., Cai, X. Back reaction, covariant anomaly and effective action. J. High Energ. Phys. 2010, 12 (2010). https://doi.org/10.1007/JHEP05(2010)012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)012

Keywords

Navigation