Skip to main content
Log in

A note on obstinate tachyons in classical dS solutions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The stabilisation of the dilaton and volume in tree-level flux compactifications leads to model independent and thus very powerful existence and stability criteria for dS solutions. In this paper we show that the sizes of cycles wrapped by orientifold planes are scalars whose scalings in the potential are not entirely model independent, but enough to entail strong stability constraints. For all known dS solutions arising from massive IIA supergravity flux compactifications on SU(3)-structure manifolds the tachyons are exactly within the subspace spanned by the dilaton, the total volume and the volumes of the orientifold cycles. We illustrate this in detail for the well-studied case of the O6 plane compactification on \( \mathrm{SU}(2)\times \mathrm{SU}(2)/{{\mathbb{Z}}_2}\times {{\mathbb{Z}}_2} \). For that example we uncover another novel structure in the tachyon spectrum: the dS solutions have a singular, but supersymmetric, Minkowski limit, in which the tachyon exactly aligns with the sgoldstino.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. A. Saltman and E. Silverstein, The scaling of the no scale potential and de Sitter model building, JHEP 11 (2004) 066 [hep-th/0402135] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP 01 (2012) 020 [arXiv:1107.2115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Banks, Landskepticism or why effective potentials dont count string models, hep-th/0412129 [INSPIRE].

  7. Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Blaback, U.H. Danielsson and T. Van Riet, Resolving anti-brane singularities through time-dependence, JHEP 02 (2013) 061 [arXiv:1202.1132] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.P. Conlon, Quantum gravity constraints on inflation, JCAP 09 (2012) 019 [arXiv:1203.5476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. I. Bena, M. Graña, S. Kuperstein and S. Massai, Anti-D3sSingular to the bitter end, arXiv:1206.6369 [INSPIRE].

  11. T. Banks, The top 10500 reasons not to believe in the landscape, arXiv:1208.5715 [INSPIRE].

  12. B. de Wit, D. Smit and N. Hari Dass, Residual supersymmetry of compactified D = 10 supergravity, Nucl. Phys. B 283 (1987) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].

    ADS  Google Scholar 

  14. C. Caviezel et al., On the cosmology of type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, Supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].

    Article  Google Scholar 

  17. B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].

    Article  Google Scholar 

  18. C. Caviezel, T. Wrase and M. Zagermann, Moduli stabilization and cosmology of type IIB on SU(2)-structure orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. G. Shiu and Y. Sumitomo, Stability constraints on classical de Sitter vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. U.H. Danielsson et al., De Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].

    ADS  Google Scholar 

  29. T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Roest, Gaugings at angles from orientifold reductions, Class. Quant. Grav. 26 (2009) 135009 [arXiv:0902.0479] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Blaback et al., Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. J. Blaback et al., The problematic backreaction of SUSY-breaking branes, JHEP 08 (2011) 105 [arXiv:1105.4879] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Blaback et al., (Anti-)Brane backreaction beyond perturbation theory, JHEP 02 (2012) 025 [arXiv:1111.2605] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F. Saracco and A. Tomasiello, Localized O6-plane solutions with Romans mass, JHEP 07 (2012) 077 [arXiv:1201.5378] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. McOrist and S. Sethi, M-theory and type IIA flux compactifications, JHEP 12 (2012) 122 [arXiv:1208.0261] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. M. Ihl and T. Wrase, Towards a realistic type IIA \( {T^6}/{{\mathbb{Z}}_4} \) orientifold model with background fluxes. Part 1. Moduli stabilization, JHEP 07 (2006) 027 [hep-th/0604087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Ihl, D. Robbins and T. Wrase, Toroidal orientifolds in IIA with general NS-NS fluxes, JHEP 08 (2007) 043 [arXiv:0705.3410] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. C. Caviezel et al., The effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Mehta, Y.-H. He and J.D. Hauenstein, Numerical algebraic geometry: a new perspective on string and gauge theories, JHEP 07 (2012) 018 [arXiv:1203.4235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. D. Marsh, L. McAllister and T. Wrase, The wasteland of random supergravities, JHEP 03 (2012) 102 [arXiv:1112.3034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. X. Chen, G. Shiu, Y. Sumitomo and S.H. Tye, A global view on the search for de-Sitter vacua in (type IIA) string theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. Y. Sumitomo and S.-H.H. Tye, A stringy mechanism for a small cosmological constant, JCAP 08 (2012) 032 [arXiv:1204.5177] [INSPIRE].

    Article  ADS  Google Scholar 

  49. T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric vacua in random supergravity, JHEP 01 (2013) 136 [arXiv:1207.2763] [INSPIRE].

    Article  ADS  Google Scholar 

  50. Y. Sumitomo and S.-H. H. Tye, A stringy mechanism for a small cosmological constantMulti-moduli cases, arXiv:1209.5086 [INSPIRE].

  51. Y. Sumitomo and S.-H.H. Tye, Preference for a vanishingly small cosmological constant in supersymmetric vacua in a type IIB string theory model, arXiv:1211.6858 [INSPIRE].

  52. A. Aazami and R. Easther, Cosmology from random multifield potentials, JCAP 03 (2006) 013 [hep-th/0512050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Gomez-Reino and C.A. Scrucca, Locally stable non-supersymmetric Minkowski vacua in supergravity, JHEP 05 (2006) 015 [hep-th/0602246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. L. Covi et al., de Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Gomez-Reino, J. Louis and C.A. Scrucca, No metastable de Sitter vacua in N = 2 supergravity with only hypermultiplets, JHEP 02 (2009) 003 [arXiv:0812.0884] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Borghese and D. Roest, Metastable supersymmetry breaking in extended supergravity, JHEP 05 (2011) 102 [arXiv:1012.3736] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. J. Hartong, A. Ploegh, T. Van Riet and D.B. Westra, Dynamics of generalized assisted inflation, Class. Quant. Grav. 23 (2006) 4593 [gr-qc/0602077] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].

    Article  ADS  Google Scholar 

  59. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].

    Article  ADS  Google Scholar 

  60. P. Fré, M. Trigiante and A. Van Proeyen, Stable de Sitter vacua from N = 2 supergravity, Class. Quant. Grav. 19 (2002) 4167 [hep-th/0205119] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. D. Roest and J. Rosseel, De Sitter in extended supergravity, Phys. Lett. B 685 (2010) 201 [arXiv:0912.4440] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  62. G. Dall’Agata and G. Inverso, De Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett. B 718 (2013) 1132 [arXiv:1211.3414] [INSPIRE].

    ADS  Google Scholar 

  63. D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].

    Article  Google Scholar 

  64. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].

    Article  ADS  Google Scholar 

  65. L. Bedulli and L. Vezzoni, The Ricci tensor of SU(3)-manifolds, J. Geom. Phys. 57 (2007) 1125 [math/0606786].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Van Riet.

Additional information

ArXiv ePrint: 1212.5178

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielsson, U.H., Shiu, G., Van Riet, T. et al. A note on obstinate tachyons in classical dS solutions. J. High Energ. Phys. 2013, 138 (2013). https://doi.org/10.1007/JHEP03(2013)138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)138

Keywords

Navigation