Skip to main content

Population dynamics and non-Hermitian localization

  • Conference paper
  • First Online:
Statistical Mechanics of Biocomplexity

Part of the book series: Lecture Notes in Physics ((LNP,volume 527))

Abstract

We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schrödinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influenced by a simple square well growth profile. Results from discrete lattice growth models in both one and two dimensions are presented. A set of similarity transformations which lead to exact results for the spectrum and winding numbers of eigenfunctions for random growth rates in one dimension is described in detail. We discuss the influence of boundary conditions, and argue that periodic boundary conditions lead to results which are in fact typical of a broad class of growth problems with convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-I. Wakita, K. Komatsu, A. Nakahara, T. Matsyama, and M. Matsushita, J. Phys. Soc. Japan 63, 1205 (1994)

    Article  ADS  Google Scholar 

  2. see also M. Matsushita, in Bacteria as Multicellular Organisms edited by J.A. Shapiro and M. Dworkin (Oxford University Press, Oxford, 1997).

    Google Scholar 

  3. O. Rauprich, M. Matsushita, C.J. Weijer, F. Siegert, S.E. Esipov, and J.A. Shapiro, J. Bacteriology 178, 6525 (1996)

    Google Scholar 

  4. J.A. Shapiro and D. Trubatch, Physica D 49, 214 (1991).

    Article  ADS  Google Scholar 

  5. E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czlrok and T. Vicsek, Nature 368, 46 (1994)

    Article  ADS  Google Scholar 

  6. E. Ben-Jacob, H. Shmueli, O. Shochet and A. Tenebaum, Physica A 187, 378 (1992) and Physica A 202, 1 (1994).

    Article  ADS  Google Scholar 

  7. E.O. Budrene and H. Berg, Nature 349, 630 (1991) and Nature 376, 49 (1995).

    Article  ADS  Google Scholar 

  8. J. D. Murray, Mathematical Biology, (Springer-Verlag, N.Y., 1993), Chapter 11.

    Book  MATH  Google Scholar 

  9. A.R. Robinson, Proc. R. Soc. Lond. A 453, 2295 (1997)

    Article  MATH  ADS  Google Scholar 

  10. see also R.V. Vincent and N.A. Hill, J. Fluid Mech. 327, 343 (1996).

    Article  MATH  ADS  Google Scholar 

  11. D.R. Nelson and N. Shnerb, Phys. Rev. E 58, 1383 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  12. K.A. Dahmen, D.R. Nelson, and N.M. Shnerb, to be published, Los Alamos Archive cond-mat/9807394.

    Google Scholar 

  13. N. Shnerb and D.R. Nelson, Phys. Rev. Lett. 80, 5172 (1998).

    Article  ADS  Google Scholar 

  14. N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996); Phys. Rev. B 56, 8651 (1997); Phys. Rev. B 58, 8384 (1998).

    Article  ADS  Google Scholar 

  15. The term “mobility edge” is taken from the physics of disordered semiconductors, where it refers to an energy dividing localized from extended electron eigenfunctions.

    Google Scholar 

  16. See B.I. Shkovskii and A.L. Efros Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Google Scholar 

  17. R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, Interscience Publishers (John Wiley) (1967).

    Google Scholar 

  18. Piet Brouwer, private communication.

    Google Scholar 

  19. V.G. Ganzha, E.V. Vorozhtsov, Numerical Solutions for Partial Differential Equations, Problem Solving Using Mathematica, CRC Press (1996).

    Google Scholar 

  20. W.F. Ames, Numerical Methods for Partial Differential Equations, Academic Press (1992).

    Google Scholar 

  21. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling Numerical Recipes (FORTRAN), Cambridge University Press, Cambridge (1990).

    MATH  Google Scholar 

  22. P.W. Brouwer, P. G. Silvestrov and C. W. J. Beenakker, Phys. Rev. B, 56, R4333 (1997).

    Google Scholar 

  23. E. Brezin and A. Zee, Nucl. Phys. B, 509[FS], 599 (1998); J. Feinberg and A. Zee, cond-mat/9710040.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. I. Y. Goldsheid and B. A. Khoruzhenko, Phys. Rev. Lett. 80, 2897 (1998).

    Article  ADS  Google Scholar 

  25. D. J. Thouless, J. Phys. C 5, 77 (1972).

    Article  ADS  Google Scholar 

  26. See, e.g., F. R. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, N.Y. (1974).

    Google Scholar 

  27. The argument is best understood after taking the continuum limit by letting the lattice constant l 0 tend to zero. Suppose the continuum eigenfunction φ n(x, g) with complex eigenvalue were in fact exactly zero at position x=x 0. By a similarity or “gauge” transformation similar to Eq. (17), one could shift all effects of the non-Hermiticity to the position x 0. The transformed eigenfunction would still vanish at x 0, because this gauge transformation is non-singular. All effects of non-Hermiticity would then disappear for this eigenfunction, which would thus have to be localized with a real eigenvalue, leading to a contradiction. We are grateful to Ady Stern for discussions on this point.

    Google Scholar 

  28. L.N. Trefethen, A. E. Trefethen, S. C. Reddy and T. A. Driscoll, Science 261 578 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  29. L.N. Trefethen, SIAM Rev. 39 383 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  30. S. C. Reddy and L. N. Trefethen, SIAM J. Appl. Math. 54 1634 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  31. The norm of a matrix A is defined here as ||A|| = √max. eigenvalue of A A

    Google Scholar 

  32. See, e.g., N. Hatano and D.R. Nelson, Phys. Rev. B 58, 8384 (1998).

    Article  ADS  Google Scholar 

  33. J. T. Chalker and B. Mehlig, cond-mat/9809090.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. Reguera J.M.G. Vilar J.M. Rubí

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Dahmen, K.A., Nelson, D.R., Shnerb, N.M. (1999). Population dynamics and non-Hermitian localization. In: Reguera, D., Vilar, J., Rubí, J. (eds) Statistical Mechanics of Biocomplexity. Lecture Notes in Physics, vol 527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105012

Download citation

  • DOI: https://doi.org/10.1007/BFb0105012

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66245-7

  • Online ISBN: 978-3-540-48486-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics