Skip to main content
Log in

Inertial obukhov-bolgiano interval in shell models of convective turbulence

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The shell model of developed convective turbulence of an incompressible fluid is considered. Regimes developing at high Rayleigh numbers are investigated numerically for three- and two-dimensional motion. It is shown that in the three-dimensional turbulent convection model the inertial Obukhov-Bolgiano interval is developed on large scales, but this interval is unstable and gives way to the Kolmogorov regime in which the temperature behaves as a passive admixture. In the two-dimensional turbulent convection model a finite scale interval on which the buoyancy forces determine the nature of the fluctuations but the spectral laws established differ from those that follow from dimensional considerations for the Obukhov-Bolgiano interval is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Obukhov, “Effect of buoyancy forces on the structure of the temperature field in a turbulent flow,”Dokl. Akad. Nauk SSSR,125, 1246 (1959).

    Google Scholar 

  2. R. Bolgiano, “Turbulent spectra in a stably stratified atmosphere,”J. Geophys. Res.,64, 2226 (1959).

    Article  ADS  Google Scholar 

  3. A. S. Monin and A. M. Yaglom,Statistical Hydrodynamics, Vol. 2 [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  4. V. D. Zimin and P. G. Frick,Turbulent Convection [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  5. E. D. Siggia, “High Rayleigh number convection. Review,”Annu. Rev. Fluid. Mech.,26, 137 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. X.-Z. Wu, L. Kadanoff, A. Libchaber, and M. Sano, “Frequency power spectrum of temperature fluctuations in free convection,”Phys. Rev. Lett.,64, 2140 (1990).

    Article  ADS  Google Scholar 

  7. F. Chilla, S. Ciliberto, C. Innocenti, and E. Pampaloni, “Boundary layer and scaling properties in turbulent thermal convection,”Nuovo Cim. D,15, 1229 (1993).

    Article  ADS  Google Scholar 

  8. S. Cioni, S. Ciliberto, and J. Sommeria, “Temperature structure function in turbulent convection at low Prandtl number,”Europhys. Lett.,32, 413 (1995).

    Article  ADS  Google Scholar 

  9. E. B. Gledzer, F. V. Dolzhanskii, and A. M. Obukhov,Systems of Hydrodynamic Type and their Application [in Russian], Nauka, Moscow (1981).

    MATH  Google Scholar 

  10. P. G. Frick, “Simulation of cascade processes in two-dimensional tubulent convection,”Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 71 (1986).

  11. T. E. Shaidurova, “Hierarchical model of turbulent convection,” Preprint [in Russian], Institute of Continuum Mechanics, Sverdlovsk (1986).

    Google Scholar 

  12. A. Brandenburg, “Energy spectra in a model for convective turbulence,”Phys. Rev. Lett. 69, 605 (1992).

    Article  ADS  Google Scholar 

  13. V. N. Desnyanskii and E. A. Novikov, “Simulation of cascade processes in turbulent flows,”Prikl. Mat. Mekh.,38, 507 (1974).

    Google Scholar 

  14. E. B. Gledzer, “Systems of hydrodynamic type permitting two quadratic integrals of motion,”Dokl. Akad. Nauk SSSR,209, 1046 (1973).

    Google Scholar 

  15. V. D. Zimin, “Hierarchical model of turbulence,”Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana,17, 1265 (1981).

    ADS  Google Scholar 

  16. P. G. Frick, “Hierarchical model of two-dimensional turbulence,”Magnit Gidrodinamika, No. 1, 60 (1983).

  17. M. H. Jensen, G. Paladin, and A. Vulpiani, “Shell model for turbulent advection of passive scalar fields,”Phys. Rev. A,45, 7214 (1992).

    Article  ADS  Google Scholar 

  18. D. Pisarenko, L. Biferale, D. Courvoisier, U. Frisch, and M. Vergassola, “Further results on multifractality in shell models,”Phys. Fluids A,5, 2533 (1993).

    Article  MATH  ADS  Google Scholar 

  19. L. Biferale, A. Lambert, R. Lima, G. Paladin, “Transition to chaos in a shell model of turbulence,”Physica D,80, 105 (1995).

    Article  MATH  ADS  Google Scholar 

  20. P. Frick, B. Dubrulle, and A. Babiano, “Scaling properties of a class of shell-models,”Phys. Rev. E,51, 5582 (1995).

    Article  ADS  Google Scholar 

  21. M. Yamada and K. Ohkitani, “The constant of motion and the inertial subrange spectrum in fully-developed model turbulence,”Phys. Lett. A,134, 165 (1988).

    Article  ADS  Google Scholar 

  22. L. Kadanoff, D. Lohse, J. Wang, and R. Benzi, “Scaling and dissipation in GOY shell model,”Phys. Fluids,7, 617 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. S. A. Lozhkin and P. G. Frick, “Simulation of cascade processes in convective turbulence at extremum Prandtl numbers,” in:Mathematical Simulation of Systems and Processes [in Russian], No. 4, 54 (1996).

  24. R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence,”Phys. Fluids,10, 1417 (1967).

    Article  ADS  Google Scholar 

  25. P. Frick and E. Aurell, “On spectral laws of 2D turbulence in shell models,”Europhys. Lett.,24, 725 (1993).

    Article  ADS  Google Scholar 

  26. E. Aurell, G. Boffetta, A. Crisanti, P. Frick, and A. Vulpiani, “Statistical mechanics of shell models for two-dimensional turbulence,”Phys. Rev. E,50, 4705 (1994).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Perm’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 37–46, November–December, 1998.

The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 94-01-00951a).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozhkin, S.A., Frick, P.G. Inertial obukhov-bolgiano interval in shell models of convective turbulence. Fluid Dyn 33, 842–849 (1998). https://doi.org/10.1007/BF02698652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698652

Keywords

Navigation