Skip to main content
Log in

On the integrability and perturbation of three-dimensional fluid flows with symmetry

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

The purpose of this paper is to develop analytical methods for studyingparticle paths in a class of three-dimensional incompressible fluid flows. In this paper we study three-dimensionalvolume preserving vector fields that are invariant under the action of a one-parameter symmetry group whose infinitesimal generator is autonomous and volume-preserving. We show that there exists a coordinate system in which the vector field assumes a simple form. In particular, the evolution of two of the coordinates is governed by a time-dependent, one-degree-of-freedom Hamiltonian system with the evolution of the remaining coordinate being governed by a first-order differential equation that depends only on the other two coordinates and time. The new coordinates depend only on the symmetry group of the vector field. Therefore they arefield-independent. The coordinate transformation is constructive. If the vector field is time-independent, then it possesses an integral of motion. Moreover, we show that the system can be further reduced toaction-angle-angle coordinates. These are analogous to the familiar action-angle variables from Hamiltonian mechanics and are quite useful for perturbative studies of the class of systems we consider. In fact, we show how our coordinate transformation puts us in a position to apply recent extensions of the Kolmogorov-Arnold-Moser (KAM) theorem for three-dimensional, volume-preserving maps as well as three-dimensional versions of Melnikov's method. We discuss the integrability of the class of flows considered, and draw an analogy with Clebsch variables in fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., and Marsden, J. E. [1978].Foundations of Mechanics. Addison-Wesley: Reading, MA.

    MATH  Google Scholar 

  • Arnold, V. I. [1965]. Sur la topologie des ecoulements stationaries des fluides parfaits.C. R. Acad. Sci. Paris. 261, 17–20.

    MATH  MathSciNet  Google Scholar 

  • Arnold, V. I. [1978].Mathematical Methods of Classical Mechanics. Springer-Verlag: New York.

    MATH  Google Scholar 

  • Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I. [1988].Dynamical Systems III. Encyclopedia of Mathematical Sciences, R. V. Gamkrelidze, ed. Springer-Verlag: New York.

    Google Scholar 

  • Beigie, D., Leonard, A., and Wiggins, S. [1991a]. Chaotic transport in the homoclinic and heteroclinic tangle regions of quasiperiodically forced two-dimensional dynamical systems.Nonlinearity 4, 775–819.

    Article  MathSciNet  MATH  Google Scholar 

  • Beigie, D., Leonard, A., and Wiggins, S. [1991b]. The dynamics associated with the chaotic tangles of two-dimensional quasiperiodic vector fields: theory and applications. InNonlinear Phenomena in Atmospheric and Oceanic Sciences, G. Carnevale and R. Pierrehumbert, eds. Springer-Verlag: New York.

    Google Scholar 

  • Bluman, G. W., and Kumei, S. [1989].Symmetries and Differential Equations. Springer-Verlag: New York.

    MATH  Google Scholar 

  • Cary, J. R., and Littlejohn, R. G. [1982]. Hamiltonian mechanics and its application to magnetic field line flow.Ann. Phys. 151, 1–34.

    MathSciNet  Google Scholar 

  • Camassa, R., and Wiggins, S. [1991]. Chaotic advection in a Rayleigh-Benard flow.Phys. Rev. A 43(2), 774–797.

    Article  MathSciNet  Google Scholar 

  • Cheng, C.-Q., and Sun, Y.-S. [1990]. Existence of invariant tori in three-dimensional measure-preserving mappings.Celestial Mech. 47, 275–292.

    Article  MathSciNet  MATH  Google Scholar 

  • de la Llave, R. [1992]. Recent progress in classical mechanics. Preprint.

  • Delshams, A., and de la Llave, R. [1990]. Existence of quasi-periodic orbits and absence of transport for volume-preserving transformations and flows. Preprint.

  • Feingold, M., Kadanoff, L. P., and Piro, O. [1988]. Passive scalars, three-dimensional volume-preserving maps and chaos.J. Statist. Phys. 50, 529–565.

    Article  MathSciNet  MATH  Google Scholar 

  • Franjione, J. G., and Ottino, J. M. [1991]. Stretching in duct flows.Phys. Fluids A 3(11), 2819–2821.

    Article  MathSciNet  Google Scholar 

  • Gradshteyn, I. S., and Ryzhik, I. M. [1980].Table of Integrals, Series and Products. Academic Press: New York.

    MATH  Google Scholar 

  • Herman, M. [1991]. Topological stability of the Hamiltonian and volume-preserving dynamical systems. Lecture at the International Conference on Dynamical Systems, Evanston, Illinois.

  • Janaki, M. S., and Ghosh, G. [1987]. Hamiltonian formulation of magnetic field line equations.J. Phys. A 20, 3679–3685.

    Article  MathSciNet  Google Scholar 

  • Kolmogorov, A. N. [1953]. On dynamical systems with integral invariants on the torus.Dokl. Akad. Nauk SSSR 93, 763–766.

    MATH  MathSciNet  Google Scholar 

  • Kopell, N. [1985]. Invariant manifolds and the initialization problem for some atmospheric equations.Phys. D 14, 203–215.

    Article  MATH  MathSciNet  Google Scholar 

  • Kusch, H. A., and Ottino, J. M. [1991]. Experiments on mixing in continuous chaotic flows.J. Fluid Mech. 236, 319–348.

    Article  MathSciNet  Google Scholar 

  • MacKay, R. S. [1992]. Transport in three dimensional volume-preserving flows. To be published in J. Nonlin. Sci.

  • Marsden, J., and Weinstein, A. [1972]. Reduction of symplectic manifolds with symmetry.Rep. Math. Phys. 5, 121–130.

    Article  MathSciNet  Google Scholar 

  • Moser, J. [1973]. Stable and Random Motions in Dynamical Systems.Ann. Math. Stud. No. 77.

  • Olver, P. J. [1986].Applications of Lie Groups to Differential Equations. Springer-Verlag: New York.

    MATH  Google Scholar 

  • Ottino, J. M. [1989].The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press: Cambridge.

    MATH  Google Scholar 

  • Rom-Kedar, V., Leonard, A., and Wiggins, S. [1990]. An analytical study of transport, mixing and chaos in an unsteady vortical flow.J. Fluid Mech. 214, 347–394.

    Article  MathSciNet  MATH  Google Scholar 

  • Serrin, J. [1959]. Mathematical Principles of Classical Fluid Mechanics. InEncyclopedia of Physics Vol. VIII, S. Flugge, ed. Springer-Verlag: New York.

    Google Scholar 

  • Truesdell, C. [1954].The Kinematics of Vorticity. Indiana University Publications Science Series No. 19. Indiana University: Bloomington, Indiana.

    MATH  Google Scholar 

  • Wiggins, S. [1988].Global Bifurcations and Chaos—Analytical Methods. Springer-Verlag: New York.

    MATH  Google Scholar 

  • Wiggins, S. [1990].Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag: New York.

    MATH  Google Scholar 

  • Wrede, R. C. [1963].Introduction to Vector and Tensor Analysis. Wiley: New York.

    MATH  Google Scholar 

  • Xia, Z. [1992]. Existence of invariant tori in volume-preserving diffeomorphisms.Ergodic Theory Dyn. Syst. 12, 621–631.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezić, I., Wiggins, S. On the integrability and perturbation of three-dimensional fluid flows with symmetry. J Nonlinear Sci 4, 157–194 (1994). https://doi.org/10.1007/BF02430631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430631

Key words

Navigation