Skip to main content
Log in

Spacetime representations of computational structures

Raum-Zeit-Darstellungen von Rechenprozessen

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

A general theory for characterizing and then realizing algorithms in hardware is given. The physical process of computation is interpreted in terms of a graph in physical space and time, and then an embedding into this graph of another graph which characterizes data flow in particular algorithms is given. The types of the special class of computational structures called systolic arrays which can occur physically are completely described, and a technique is developed for mapping the graph of a particular systolic algorithm into a physical array. Examples illustrate the methodology.

Zusammenfassung

Eine allgemeine Theorie zur Charakterisierung und Realisierung von Algorithmen in Hardware wird angegeben. Der physikalische Vorgang des Rechenprozesses wird als Graph in einem physikalischen Raum-Zeit-System dargestellt. Sodam wird angegeben, wie in diesen Graphen ein weiterer Graph, der den Datenfluß in speziellen Algorithmen charakterisiert, eingebettet werden kann. Typen spezieller Klassen von Rechenstrukturen, sogenannte systolische Felder (systolic arrays), die physikalisch auftreten können, werden vollständig beschrieben und eine Methode entwickelt, um die Graphen eines gegebenen systolischen Algorithmus in eine physikalisches Feld abzubilden. Beispiele illustrieren die Vorgehensweise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cardelli, L.: Doctoral Dissertation, University of Edinborough, 1982.

  2. Kuch, D. J.: A survey of parallel machine organization and programming. ACM Comp. Survey9 (1977).

  3. Kung, H. T.: Why systolic architectures. CMU-CS-81-148, Carnegie-Mellon University, 1981.

  4. Mead, C. A., Conway, L. A.: Introduction to VLSI Systems. Reading, Mass: Addison-Wesley 1980.

    Google Scholar 

  5. Miranker, W. L.: A survey of parallelism in numerical analysis. SIAM Rev.13 (1971).

  6. Miranker, W. L., Winkler, A.: Spacetime representations of systolic computational structures. IBM Research Center Report 9775, December 1982.

  7. Moldovan, D. I.: On the design of algorithms for VLSI systolic arrays. Proc. IEEE71 (1983).

  8. Mordell, L. J.: Diophantine equations, pp. 30ff. New York: Academic Press 1969.

    Google Scholar 

  9. Sameh, A. H.: Numerical parallel algorithms. In: High speed computer and algorithm organization (Kuck, D. J., Lawrie, D. H., Sameh, A. H., eds.). New York: Academic Press 1977.

    Google Scholar 

  10. Stockmeyer, L. A.: Private communication.

  11. Weiser, U., Davis, A.: A wavefront notation tool for VLSI array design. In: VLSI Systems and Computations (Kunz, H. T., Sproul, B., Steek, G., eds.). Rockville, Maryland: Computer Science Press 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Under the auspices of a student interaction agreement with the Courant Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranker, W.L., Winkler, A. Spacetime representations of computational structures. Computing 32, 93–114 (1984). https://doi.org/10.1007/BF02253685

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253685

AMS Subject Classifications

Key words

Navigation