Skip to main content
Log in

Homotopy algorithm for symmetric eigenvalue problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The homotopy method can be used to solve eigenvalue-eigenvector problems. The purpose of this paper is to report the numerical experience of the homotopy method of computing eigenpairs for real symmetric tridiagonal matrices together with a couple of new theoretical results. In practice, it is rerely of any interest to compute all the eigenvalues. The homotopy method, having the order preserving property, can provide any specific eigenvalue without calculating any other eigenvalues. Besides this advantage, we note that the homotopy algorithm is to a large degree a parallel algorithm. Numerical experimentation shows that the homotopy method can be very efficient especially for graded matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E., Georg, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Review22, 28–85 (1980)

    Google Scholar 

  2. Blattner, J.W.: Bordered matrices. J. Soc. Indust. Appl. Math.10, 528–536 (1962)

    Google Scholar 

  3. Chu, M.T.: A simple application of the homotopy method to symmetric eigenvalue problems. Linear Algebra Appl.59, 85–90 (1984)

    Google Scholar 

  4. Li, T.Y., Sauer, T., Yorke, J.: Numerical solution of a class of difficient polynomial systems. SIAM J. Numer. Anal.24, 435–451 (1987)

    Google Scholar 

  5. Longuet-Higgens, H.C., Opik, U., Pryce, M.H.L., Sack, R.A.: Studies of the John-Teller effect. Proceedings of the Royal Society244, 1–16 (1958)

    Google Scholar 

  6. Martin, R.S., Wilkinson, J.H.: Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numerical Math.9, 386–393 (1967)

    Google Scholar 

  7. Ortega, J.M.: Numerical analysis: A second course. New York: Academic Press 1972

    Google Scholar 

  8. Parlett, B.N.: The symmetric eigenvalue problem, Englewood Cliffs: N.J., Prentice-Hall 1980

    Google Scholar 

  9. Rheinboldt, W.C.: Numerical analysis of parametrized nonlinear equations. New York Heidelberg Berlin: Wiley 1986

    Google Scholar 

  10. Ruhe, A.: Algorithms for the nonlinear cigenvalue problem. SIAM J. Numer. Anal.4, 674–689 (1973)

    Google Scholar 

  11. Smith, B.T.: Matrix eigensystem routines, EISPACK Guide, 2nd. New York Heidelberg Berlin: Springer 1976

    Google Scholar 

  12. Stoer, J., Bulirsch, R.: Introduction to numerical analysis. New York Heidelberg Berlin: Springer 1980

    Google Scholar 

  13. Wilkinson, J.H.: The calculation of the eigenvectors of codiagonal matrices. Computer Journal1, 90–96 (1958)

    Google Scholar 

  14. Wilkinson, J.H.: The algebraic eigenvalue problem. New York: Oxford University Press 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research was supported in part by NSF under Grant DMS-8701349

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T.Y., Rhee, N.H. Homotopy algorithm for symmetric eigenvalue problems. Numer. Math. 55, 265–280 (1989). https://doi.org/10.1007/BF01390054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01390054

Subject Classifications

Navigation