Skip to main content
Log in

A characterization of linearly reductive groups by their invariants

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The theorem of Hochster and Roberts says that, for every moduleV of a linearly reductive groupG over a fieldK, the invariant ringK[V] G is Cohen-Macaulay. We prove the following converse: ifG is a reductive group andK[V] G is Cohen-Macaulay for every moduleV, thenG is linearly reductive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Benson,Representations and Cohomology I, Cambridge Studies in Advanced Mathematics30, Cambridge Univ. Press, Cambridge, 1991.

    Google Scholar 

  2. W. Haboush,Reductive groups are geometrically reductive, Ann. of Math.102 (1975), 67–83.

    Google Scholar 

  3. D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann.36 (1980), 473–534. Russian translation: Д. Гильберт, О меорииалгебраических форм, Д. Гильберт, Избранные труды, том М., Факториал 1998, стр. 16–66.

    Google Scholar 

  4. M. Hochster, J. A. Eagon,Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. of Math.93 (1971), 1020–1058.

    Google Scholar 

  5. M. Hochster, J. Roberts,Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math.13 (1974), 115–175.

    Google Scholar 

  6. G. Kemper,On the Cohen-Macaulay property of modular invariant rings, J. of Algebra215 (1999), 330–351.

    Google Scholar 

  7. H. Kraft,Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig, 1984. Russian translation: Х. Крафт, Геомемрические мемоды в меории инварианмов, М., Мир, 1987.

    Google Scholar 

  8. H. Kraft, F. Kutzschenbauch,Equivariant affine line bundles and linearization, Mathematical Research Letters3 (1996), 619–627.

    Google Scholar 

  9. D. Mumford, J. Fogarty, F. Kirwan,Geometric Invariant Theory, Ergebnisse der Math. und ihrer Grenzgebiete34, third edn., Springer-Verlag, Berlin, Heidelberg, New York, 1994.

    Google Scholar 

  10. M. Nagata,Lectures on the Fourteenth Problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965.

    Google Scholar 

  11. P. E. Newstead,Intoduction to Moduli Problems and Orbit Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1978.

    Google Scholar 

  12. В. Л. Попов, К меореме Гульберма об инварианмах, Докл. АН СССР249 (1979), No 3, 551–555. English translation: V. L. Popov,On Hilbert's theorem on invariants, Soviet Math. Dokl.20 (1979), 1318–1322.

    Google Scholar 

  13. I. Schur,Vorlesungen über Invariantentheorie, Springer-Verlag, Berlin, Heidelberg, New York, 1968.

    Google Scholar 

  14. T. A. Springer,Invariant Theory, Lecture Notes in Math.585, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Russian translation: Т. Спрингер, Теория инбарианмов, Математика. Новое в зарубежной науке24, М., Мнр, 1981.

    Google Scholar 

  15. T. A. Springer,Aktionen reduktiver Gruppen auf Varietäten, in: H. Kraft, P. Slodowy, T. A. Springer, eds.,Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar13, Birkhäuser, Basel, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemper, G. A characterization of linearly reductive groups by their invariants. Transformation Groups 5, 85–92 (2000). https://doi.org/10.1007/BF01237180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237180

Keywords

Navigation