Skip to main content
Log in

Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction inParacoccus denitrificans

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

By using the gene encoding the C-terminal part of thecd 1-type nitrite reductase ofPseudomonas stutzeri JM300 as a heterologous probe, the corresponding gene fromParacoccus denitrificans was isolated. This gene,nirS, codes for a mature protein of 63144 Da having high homology withcd 1-type nitrite reductases from other bacteria. Directly downstream fromnirS, three othernir genes were found in the ordernirECF. The organization of thenir gene cluster inPa. denitrificans is different from the organization ofnir clusters in some Pseudomonads.nirE has high homology with a S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase (uro'gen III methylase). This methylase is most likely involved in the hemed 1 biosynthesis inPa. denitrificans. The third gene,nirC, codes for a small cytochromec of 9.3 kDa having high homology with cytochromec 55X ofPs. stutzeri ZoBell. The 4th gene,nirF, has no homology with other genes in the sequence databases and has no relevant motifs. Inactivation of either of these 4 genes resulted in the loss of nitrite and nitric oxide reductase activities but not of nitrous oxide reductase activity.nirS mutants lack thecd 1-type nitrite reductase whilenirE, nirC andnirF mutants produce a small amount ofcd 1-type nitrite reductase, inactive due to the absence of hemed 1. Upstream from thenirS gene the start of a gene was identified which has limited homology withnosR, a putative regulatory gene involved in nitrous oxide reduction. A potential FNR box was identified between this gene andnirS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SDS:

sodium dodecyl sulfate

NBT:

nitroblue tetrazolium

PAGE:

polyacrylamide gel electrophoresis

References

  • Ambler RP & Tobari J (1985) The primary structure ofPseudomonas AM1 amicyanin and pseudoazurin. Biochem. J. 232: 451–457

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K (1993) Current Protocols in Molecular Biology. John Wiley & Sons, New York

    Google Scholar 

  • Bell AI, Gaston KL, Cole JA & Busby SJW (1989) Cloning of binding sequences for theEscherichia coli transcription activators, FNR and CRP: location of bases involved in discrimination between FNR and CRP. Nucl. Acids Res. 17: 3865–3874

    Google Scholar 

  • Birnboim HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Meth. Enzymol. 100: 243–255

    Google Scholar 

  • Blanche F, Debussche L, Thibaut D, Crouzet J & Cameron B (1989) Purification and characterization ofS-adenosyl-L-methionine: uroporphyrinogen III methyltransferase fromPseudomonas denitrificans. J. Bacteriol. 171: 4222–4231

    Google Scholar 

  • Blanche F, Robin C, Couder M, Faucher D, Cauchois L, Cameron B & Crouzet J (1991) Purification, characterization, and molecular cloning ofS-adenosyl-L-methionine: uroporphyrinogen III methyltransferase fromMethanobacterium ivanovii. J. Bacteriol. 173: 4637–4645

    Google Scholar 

  • Boogerd FC, van Verseveld HW & Stouthamer AH (1980) Electron transport to nitrous oxide inParacoccus denitrificans. FEBS Lett. 113: 279–284

    Google Scholar 

  • Bosma G (1989) Growth-condition-dependent synthesis of electron transfer components inParacoccus denitrificans. PhD Thesis, Vrije Universiteit, Amsterdam

    Google Scholar 

  • Chang CK, Timkovich R & Wu W (1986) Evidence that hemed 1 is a 1,3-porphyrindione. Biochem. 25: 8447–8453

    Google Scholar 

  • Chang JP & Morris JG (1962) Studies on the utilization of nitrate byMicrococcus denitrificans. J. Gen. Microbiol. 29: 301–310

    Google Scholar 

  • Crouzet J, Cauchois L, Blanche F, Debussche L, Thibaut D, Rouyez MC, Rigault S, Mayuax JF & Cameron B (1990) Nucleotide sequence of aPseudomonas denitrificans 5,4-kilobase DNA fragment containing fivecob genes and identification of structural genes encodingS-adenosyl-L-methionine: uroporphyrinogen III methyltransferase and cobyrinic acida,c-diamide synthase. J. Bacteriol. 172: 5968–5979

    Google Scholar 

  • Cuypers H, Viebrock-Sambale A & Zumft WG (1992)NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifyingPseudomonas stutzeri. J. Bacteriol. 174: 5332–5339

    Google Scholar 

  • de Vries GE, Harms N, Hoogendijk J & Stouthamer AH (1989) Isolation and characterization ofParacoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch. Microbiol. 152: 52–57

    Google Scholar 

  • Goldman BS & Roth JR (1993) Genetic structure and regulation of thecysG gene inSalmonella typhimurium. J. Bacteriol. 175: 1457–1466

    Google Scholar 

  • Heijne GV (1983) Patterns of amino acids near signal-sequences cleavage sites. Eur. J. Biochem. 133: 17–21

    Google Scholar 

  • Hochstein LI (1988) The enzymes associated with denitrification. Ann. Rev. Microbiol. 42: 231–261

    Google Scholar 

  • Hoeren FU, Berks BC, Ferguson SJ & McCarthy JEG (1993) Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase fromParacoccus denitrificans. New and conserved structural motifs. Eur. J. Biochem. 218: 49–57

    Google Scholar 

  • Jackson RH, Cornish-Bowden A & Cole JA (1981) Prosthetic groups of the NADH-dependent nitrite reductase fromEscherichia coli K12. Biochem. J. 193: 861–867

    Google Scholar 

  • Jüngst A, Wakabayashi S, Matsubara H & Zumft WG (1991) ThenirSTBM region coding for cytochromecd 1-dependent nitrite respiration ofPseudomonas stutzeri consist of a cluster of mono-, di- and tetraheme proteins. FEBS Lett. 279: 205–209

    Google Scholar 

  • Jüngst A & Zumft WG (1992) Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis ofnirQ, a novel gene in the denitrification gene cluster ofPseudomonas stutzeri. FEBS Lett. 314: 308–314

    Google Scholar 

  • Kurowski B & Ludwig B (1987) The genes of theParacoccus denitrificans bc 1 complex. Nucleotide sequence and homologies between bacterial and mitochondrial subunits. J. Biol. Chem. 262: 13805–13811

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  • Lam Y & Nicholas DJD (1969) A nitrite reductase with cytochrome oxidase activity fromMicrococcus denitrificans. Biochim. Biophys. Acta 180: 459–472

    Google Scholar 

  • Lawford HG, Cox JC, Garland PB & Hadock BA (1976) Electron transport in aerobically grownParacoccus denitrificans: kinetic characterization of the membrane-bound cytochromes and the stoichiometry of respiratory-driven proto translocation. FEBS Lett. 64: 369–374

    Google Scholar 

  • Martinkus K, Kennelly PJ, Rea T & Timkovich R (1980) Purification and properties ofParacoccus denitrificans azurin. Arch. Biochem. Biophys. 199: 465–472

    Google Scholar 

  • Matchová I, Kucera I, Janiczek O, Spanning RJM & Oltmann LF (1993) The existence of an alternative electron-transfer pathway to the periplasmic nitrite reductase (cytochromecd 1) inParacoccus denitrificans. Arch. Microbiol. 159: 272–275

    Google Scholar 

  • Matthews JC & Timkovich R (1993) Biosynthetic origins of the carbon skeleton of heme d1. Bioorg. Chem. 21: 71–82

    Google Scholar 

  • Moir JWB, Baratta D, Richardson DJ & Ferguson SJ (1993) The purification of acd 1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifierThiosphaera pantotropha: the role of pseudoazurin as an electron donor. Eur. J. Biochem. 212: 377–385

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, N.Y.

    Google Scholar 

  • Normark S, Bergstrom S, Edlund T, Grundström T, Jaurin B, Lindberg FP & Olsson O (1983) Overlapping genes. Ann. Rev. Gen. 17: 499–525

    Google Scholar 

  • Ohshima T, Sugiyama M, Uozumi N, Iijima S & Kobayashi T (1993) Cloning and sequencing of a gene encoding nitrite reductase fromParacoccus denitrificans and expression of the gene inEscherichia coli. J. Ferm. Bioeng. 76: 82–88

    Google Scholar 

  • Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Wootton J, Nicolson R & Cole J (1990) Nucleotide sequence, organisation and structural analysis of the products of genes in thenirB-cysG region of theEscherichia coli K-12 chromosome. Eur. J. Biochem. 191: 315–323

    Google Scholar 

  • Robin C, Blanche F, Cauchois L, Cameron B, Couder M & Crouzet J (1991) Primary structure, expression inEscherichia coli, and properties ofS-adenosyl-L-methionine: uroporphyrinogen III methyltransferase fromBacillus megaterium. J. Bacteriol. 173: 4893–4896

    Google Scholar 

  • Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S & Church GM (1993) Characterization of the cobalamin (vitamin B12) biosynthetic genes ofSalmonella typhimurium. J. Bacteriol. 175: 3303–3316

    Google Scholar 

  • Sanger F, Coulson R, Barrel BG, Smith JH & Roe BA (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143: 161–178

    Google Scholar 

  • Shine J & Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34–38

    Google Scholar 

  • Simon R, Priefer U & Pühler A (1983) Vector plasmids forin vivo andin vitro manipulations of gram-negative bacteria. In: Pühler A (Ed) Molecular Genetics of the Bacteria-Plant Interactions (pp 98–106) Springer Verlag KG, Berlin

    Google Scholar 

  • Smith GB & Tiedje JM (1992) Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl. Environ. Microbiol. 58: 376–384

    Google Scholar 

  • Spencer JB, Stolowich NJ, Roessner CA & Scott AI (1993) TheEscherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 335: 57–60

    Google Scholar 

  • Spiro S (1992) An FNR-dependent promoter fromEscherichia coli is active and anaerobically inducible inParacoccus denitrificans. FEMS Microbiol. Lett. 98: 145–148

    Google Scholar 

  • Spiro S & Guest JR (1990) FNR and its role in oxygen-regulated gene expression inEscherichia coli. FEMS Microbiol. Rev. 75: 399–428

    Google Scholar 

  • Steinrücke P & Ludwig B (1993) Genetics ofParacoccus denitrificans. FEMS Micriobiol. Rev. 104: 83–117

    Google Scholar 

  • Stouthamer AH (1991) Metabolic regulation including anaerobic metabolism inParacoccus denitrificans. J. Bioenerg. Biomembr. 23: 163–185

    Google Scholar 

  • Sutherland J, Greenwood C, Peterson J & Thomson AJ (1986) An investigation of the ligand-binding properties ofPseudomonas aeruginosa nitrite reductase. Biochem. J. 233: 893–898

    Google Scholar 

  • Thomas PE, Ryan D & Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochromeP 450 on sodium dodecyl polyacrylamide gels. Anal. Biochem. 75: 168–176

    Google Scholar 

  • Timkovich R, Dhesi R, Martinkus KJ, Robinson MK & Rea TM (1982) Isolation ofParacoccus denitrificans cytochromecd 1: comparative kinetics with other nitrite reductases. Arch. Biochem. Biophys. 215: 47–58

    Google Scholar 

  • van Spanning RJM, Wansell C, Harms N, Oltmann LF & Stouthamer AH (1990) Mutagenesis of the gene encoding cytochromec 550 ofParacoccus denitrificans and analysis of the resultant physiological effects. J. Bacteriol. 172: 986–996

    Google Scholar 

  • van Spanning RJM, Wansell CW, Reijnders WNM, Harms N, Ras J, Oltmann LF & Stouthamer AH (1991) A method for introduction of unmarked mutations in the genome ofParacoccus denitrificans: construction of strains with multiple mutations in the genes encoding periplasmic cytochromesc 550,c 551i andc 553i . J. Bacteriol. 173: 6962–6970

    Google Scholar 

  • Voßwinkel R, Neidt I & Bothe H (1991) The production and utilization of nitric oxide by a new, denitrifying strain ofPseudomonas aeruginosa. Arch. Microbiol. 156: 62–69

    Google Scholar 

  • Warren MJ, J SN, Santander PJ, Roessner CA, Sowa BA & Scott AI (1990) Enzymatic synthesis of dihydrosirohydrochlorin (precorrin-2) and of a novel pyrrocorphin by uroporphyrinogene III methylase. FEBS Lett. 261: 76–80

    Google Scholar 

  • Warren MJ & Scott AI (1990) Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends In Biochemical Sciences 15: 486–491

    Google Scholar 

  • Witholt B, van Heerikhuizen H & de Lije L (1976) How does lysozyme penetrate through the bacterial outer membrane> Biochim. Biophys. Acta 443: 534–544

    Google Scholar 

  • Wu J-Y, Siegel LM & M KN (1991) High-level expression ofEscherichia coli NADPH-sulfite reductase: requirement for a clonedcysG plasmid to overcome limiting siroheme cofactor. J. Bacteriol. 173: 325–333

    Google Scholar 

  • Yap-Bondoc F, Bondoc LL, Timkovich R, Baker DC & Hebbler A (1990) C-methylation occurs during the biosynthesis of heme d1. J. Biol. Chem. 265: 13498–13500

    Google Scholar 

  • Ye RW, Arunakumari A, Averill BA & Tiedje JM (1992) Mutants ofPseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J. Bacteriol. 174: 2560–2564

    Google Scholar 

  • Zimmer W, Danneberg G & Bothe H (1985) Amperometric method for determining nitrous oxide in denitrification and in nitrogenase-catalyzed nitrous oxide reduction. Current microbiology 12: 341–346

    Google Scholar 

  • Zumft WG (1993) The biological role of nitric oxide in bacteria. Arch. Microbiol. 160: 253–264

    Google Scholar 

  • Zumft WG, Braun C & Cuypers H (1994) Nitric oxide reductase fromPseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochromebc complex. Eur. J. Biochem. 219: 481–490

    Google Scholar 

  • Zumft WG, Döhler K, Körner H, Löchelt S, Viebrock A & Frunzke K (1988) Defects in cytochromecd 1-dependent nitrite respiration of transposon Tn5-induced mutants fromPseudomonas stutzeri. Arch. Microbiol. 149: 492–498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, A.P.N., Reijnders, W.N.M., Kuenen, J.G. et al. Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction inParacoccus denitrificans . Antonie van Leeuwenhoek 66, 111–127 (1994). https://doi.org/10.1007/BF00871635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871635

Key words

Navigation