Skip to main content
Log in

Global stability of predator-prey interactions

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

A Lyapunov function is given that extends functions used by Volterra, Goh, and Hsu to a wide class of predator-prey models, including Leslie type models, and a biological interpretation of this function is given. It yields a simple stability criterion, which is used to examine the effect on stability of intraspecific competition among both prey and predators, of a refuge for the prey, and of Holling type II and type III functional responses. Although local stability analysis of these specific models has been done previously, the Lyapunov function facilitates study of global stability and domains of attraction and provides a unified theory which depends on the general nature of the interactions and not on the specific functions used to model them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goh, B. S.: Global stability in two species interactions. J. Math. Biol. 3, 313–318 (1976a)

    Google Scholar 

  2. Goh, B. S.: Nonvulnerability of ecosystems in unpredictable environments. Theor. Pop. Biol. 10, 83–95 (1976b)

    Google Scholar 

  3. Goh, B. S.: Global stability in many species systems. Amer. Natur. 111, 135–143 (1977)

    Google Scholar 

  4. Hahn, W.: Stability of Motion. New York: Springer 1967

    Google Scholar 

  5. Hallam, T. G.: Structural sensitivity of grazing formulations in nutrient controlled plankton models. J. Math. Biol. 5, 269–280 (1978)

    Google Scholar 

  6. Harrison, G. W.: Persistent sets via Lyapunov functions. Nonlinear Analysis. 3, 73–80 (1979a)

    Google Scholar 

  7. Harrison, G. W.: Stability under environmental stress: resistance, resilience, persistence, and variability. Amer. Natur. (1979b)

  8. Harrison, G. W.: Global stability of food chains. Amer. Natur. (1979c)

  9. Hassell, M. P., Lawton, J. H., Beddington, J. R.: Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol 46, 249–262 (1977)

    Google Scholar 

  10. Hastings, A.: Global stability of two species systems. J. Math. Biol. 5, 399–403 (1978)

    Google Scholar 

  11. Holling, C. S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canad. Entomol. 91, 293–320 (1959)

    Google Scholar 

  12. Holling, C. S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc. Can. 45, 1–60 (1965)

    Google Scholar 

  13. Holling, C. S.: Resilence and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–24 (1973)

    Google Scholar 

  14. Hsu, S. B.: On global stability of a predator prey system. Math. Biosci. 39, 1–10 (1978a)

    Google Scholar 

  15. Hsu, S. B.: The application of the Poincaré transform to the Lotka-Volterra model. J. Math. Biol. 6, 67–73 (1978b)

    Google Scholar 

  16. Ivlev, V. S.: Experimental ecology of the feeding of fishes. New Haven: Yale Univ. Press 1961

    Google Scholar 

  17. LaSalle, J. P.: The extent of asymptotic stability. Proc. Nat. Acad. Sci. U.S.A. 46, 363–365 (1960)

    Google Scholar 

  18. Leslie, P. H.: Some further notes on the use of matrices in population mathematics. Biometrika. 35, 213–245 (1948)

    Google Scholar 

  19. Monod, J.: The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949)

    Google Scholar 

  20. Murdoch, W. W., Oaten A.: Predation and population stability. Advan. Ecol. Res. 9, 1–131 (1975)

    Google Scholar 

  21. Rosenzweig, M. L., MacArthur, R. H.: Graphical representation and stability conditions. Amer. Natur. 97, 209–223 (1963)

    Google Scholar 

  22. Solomon, M. E.: The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949)

    Google Scholar 

  23. St. Amant, J.: The mathematics of predator-prey interactions. M. A. Thesis, Univ. of Calif., Santa Barbara, Calif. 1970

    Google Scholar 

  24. Steele, J. H.: The structure of Marine Ecosystems. Cambridge: Harvard Univ. Press 1974

    Google Scholar 

  25. Volterra, V.: Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Paris: Gauthier-Villars 1931

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, G.W. Global stability of predator-prey interactions. J. Math. Biology 8, 159–171 (1979). https://doi.org/10.1007/BF00279719

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00279719

Key words

Navigation