Skip to main content

Pythagorean Submanifolds

  • Chapter
  • First Online:
Geometry of Submanifolds and Applications

Part of the book series: Infosys Science Foundation Series ((ISFM))

  • 222 Accesses

Abstract

In this paper, we study a particular class of submanifolds, which we call Pythagorean submanifolds, in one of the standard complete simply connected models of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 109.00
Price excludes VAT (USA)
Hardcover Book
USD 139.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Abe, N. Koike, S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form. Yokohama Math. J. 35, 123–136 (1987)

    MathSciNet  Google Scholar 

  2. J. Álvarez-Vizoso, Curvature of the Gauss map for normally flat submanifolds in space forms. arXiv:2209.06246v2

  3. M. Arnold, A. Eydelzon, On matrix Pythagorean triples. Amer. Math. Monthly 126, 158–160 (2019)

    Article  MathSciNet  Google Scholar 

  4. M.E. Aydin, A. Mihai, C. Özgür, Pythagorean submanifolds in Euclidean spaces. Results Math. 78, 211 (2023)

    Google Scholar 

  5. M.E. Aydin, A. Mihai, A note on surfaces in space forms with Pythagorean fundamental forms. Mathematics 8, 444 (2020)

    Article  Google Scholar 

  6. M.E. Aydin, A. Mihai, C. Özgür, Pythagorean isoparametric hypersurfaces in Riemannian and Lorentzian space forms. Axioms 11, 59 (2022)

    Article  Google Scholar 

  7. T.E. Cecil, Isoparametric and Dupin hypersurfaces. SIGMA Symmetry Integr. Geom. Methods Appl. 4, 62 (2008)

    MathSciNet  Google Scholar 

  8. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, 2nd edn. With a foreword by Leopold Verstraelen. Series in Pure Mathematics, 27 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015)

    Google Scholar 

  9. M. Crasmareanu, C.-E. Hretcanu, M.-I. Munteanu, Golden and product-shaped hypersurfaces in real space forms. Int. J. Geom. Methods Mod. Phys. 10, 1320006 (2013)

    Article  MathSciNet  Google Scholar 

  10. A.J. Di Scala, On submanifolds whose shape operator is unipotent. J. Geom. 85, 32–34 (2006)

    Article  MathSciNet  Google Scholar 

  11. E. Heintze, C. Olmos, G. Thorbergsson, Submanifolds with constant principal curvatures and normal holonomy groups. Internat. J. Math. 2, 167–175 (1991)

    Article  MathSciNet  Google Scholar 

  12. M. Livio, The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number (Broadway Books, New York, USA, 2003)

    Google Scholar 

  13. C. Özgür, N.Y. Özgür, Classification of metallic shaped hypersurfaces in real space forms. Turkish J. Math. 39, 784–794 (2015)

    Article  MathSciNet  Google Scholar 

  14. C. Özgür, N.Y. Özgür, Metallic shaped hypersurfaces in Lorentzian space forms. Rev. Un. Mat. Argentina 58, 215–226 (2017)

    MathSciNet  Google Scholar 

  15. P.J. Ryan, Homogeneity and some curvature conditions for hypersurfaces. Tohoku Math. J. 21, 363–388 (1969)

    Article  MathSciNet  Google Scholar 

  16. P.J. Ryan, Hypersurfaces with parallel Ricci tensor. Osaka Math. J. 8, 251–259 (1971)

    MathSciNet  Google Scholar 

  17. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. II, 3rd edn. (Publish or Perish, Inc., Houston, Texas, 1999)

    Google Scholar 

  18. R. Takloo-Bighash, A Pythagorean Introduction to Number Theory: Right Triangles, Sums of Squares, and Arithmetic. Undergraduate Texts in Mathematics (Springer, Cham, 2018)

    Google Scholar 

  19. C.L. Terng, Isoparametric submanifolds and their Coxeter groups. J. Differ. Geom. 21, 79–107 (1985)

    Article  MathSciNet  Google Scholar 

  20. B. Wu, Isoparametric submanifolds of hyperbolic spaces. Trans. Amer. Math. Soc. 331, 609–626 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adela Mihai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydın, M.E., Mihai, A., Özgür, C. (2024). Pythagorean Submanifolds. In: Chen, BY., Choudhary, M.A., Khan, M.N.I. (eds) Geometry of Submanifolds and Applications. Infosys Science Foundation Series(). Springer, Singapore. https://doi.org/10.1007/978-981-99-9750-3_4

Download citation

Publish with us

Policies and ethics