Skip to main content

The Dimension and Intermittency of Atmospheric Dynamics

  • Conference paper
Turbulent Shear Flows 4

Abstract

We question the existence of a dimensional transition separating quasi-two dimensional and quasi-three dimensional atmospheric motions, i.e. large- and small-scale dynamics. We insist upon the fact that no matter how this transition should occur, it would have drastic consequences for atmospheric dynamics, consequences which have not been observed in spite of many recent experiments.

An alternative simpler hypothesis is proposed: that small scale structures are continuously deformed — flattened — at larger and larger scales by a scale invariant process. This continuous deformation may be characterised by defining an intermediate fractal dimension D el that we call an elliptical dimension. We show both theoretically and empirically that D el = 23/9 ~ 2.56. Atmospheric structures are therefore never “flat” (D el = 2), nor isotropic (D el = 3), but always display aspects of both. Larger structures are on the average, more stratified as a result of a well-defined stochastic process.

In this scheme, the intermittency must be quite strong in order to produce the well-known meteorological “animals” such as storms, fronts, etc. We propose that intermittency is characterised by hyperbolic probability distributions with exponents α. This possibility was first suggested by Mandelbrot (1974 a) for the rate of turbulent energy transfer (ε). We investigate intermittency for the wind (υ) the potential temperature (θ), and ε in terms of this hyperbolic intermittency. In particular, we find α υ = 5, α ε = 5/3, α 1n θ = 10/3, which show that the fifth moment of υ, the second moment of ε, and the fourth moment of 1n θ diverge.

We re-examine Mandelbrot’s model of intermittency and generalize it for anisotropic turbulence. We stress that it cannot be characterised by a single parameter, the dimension of the support of turbulence: we show that, except in a trivial case, several fractal dimensions intervene. We exhibit, for instance, a two-parameter model depending on the fractal dimension of the very active regions.

Finally, we sketch a direction for future work to assess this 23/9 dimensional scheme of atmospheric dynamics with hyperbolic intermittency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelfang, S. I. (1971): On the relation between wind shears over various intervals. J. Atmos. Sci. 10, 138

    Google Scholar 

  • Anselmet, F., Gagne, Y., Hopfmger, E. J., Antonia, R. A. (1984): High order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 63

    Article  ADS  Google Scholar 

  • Basdevant, C., Sadourny, R. (1975): Ergodic properties of inviscid truncated models of two-dimensional incompressible flows. J. Fluid Mech. 69, 673

    Article  ADS  MATH  Google Scholar 

  • Batchelor, G. I., Townsend, A. A. (1949): The nature of turbulent motion at large wave numbers. Proc. Roy. Soc. A199, 238

    Article  ADS  MATH  Google Scholar 

  • Batchelor, G. K.: The Theory of Homogeneous Turbulence ( University Press, Cambridge 1953 ) p. 198

    MATH  Google Scholar 

  • Batchelor, G. K. (1969): Computation of energy spectra in homogeneous two-dimensional turbulence. Phys. Fluids 12, 233

    Article  ADS  Google Scholar 

  • Boer, G. J., Shepherd, T. G. (1983): Large scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci. 40, 164

    Article  ADS  Google Scholar 

  • Bogliano, R. (1959): Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 2226

    Article  ADS  Google Scholar 

  • Brachet, M. E., Meiron, D. I., Orsag, S. A., Nickel, B. G., Morf, R. H., Frisch, U. (1983): Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411

    Article  ADS  MATH  Google Scholar 

  • Brown, P. S., Robinson, G. D. (1979): The variance spectrum of tropospheric winds over Eastern Europe. J. Atmos. Sci. 36, 270

    Article  ADS  Google Scholar 

  • Carnevale, G. F., Frisch, U., Salmon, R. (1981): H-theorems in fluid dynamics. J. Phys. Math. Gen. A14, 1701

    MathSciNet  MATH  Google Scholar 

  • Carnevale, G. F., Martin, P. C. (1982): Field theoretical techniques in statistical mechanics: with application to non-linear wave dynamics. Geophys. Astrophys. Fluid Dynamics 20, 131

    Article  MATH  Google Scholar 

  • Charney, J. (1971): Geostophic turbulence. J. Atmos. Sci. 28, 6

    Article  Google Scholar 

  • Chollet, J. P., Lesieur, M. (1981): Parameterisation of small scales of three-dimensional isotropic turbulence utilising spectral closures. J. Atmos. Sci. 38, 2747

    Article  ADS  Google Scholar 

  • Chorin, A. J. (1981): Estimates of intermittency, spectra, and blow-up in developed turbulence. Commun. Pure Appl. Math. 34, 853

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Curry, J. H., Herring, J. R., Loncqric, J., Orsag, S. A. (1982): Order and disorder in two- and three-dimensional Bernard convection. NCAR Preprint

    Google Scholar 

  • De Dominicis, C., Martin, P. C. (1979): Energy spectra of certain randomly stirred fluids. Phys. Rev. A19, 419

    Article  ADS  Google Scholar 

  • Endlich, R. M., Singleton, R. C., Kaufman, J. W. (1969): Spectral analysis of detailed vertical wind speed profiles. J. Atmos. Sci. 26, 1030

    Article  ADS  Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. II (Wiley, New York 1971 ) p. 567

    MATH  Google Scholar 

  • Fjortoft, R. (1953): On the changes in the spectral distribution of kinetic energy for two-dimensional, non-divergent flow. Tellus 5, 225

    Article  MathSciNet  ADS  Google Scholar 

  • Frisch, U., Sulen, P. L., Nelkin, M. (1978): A simple dynamical model of intermittent fully-developed turbulence. J. Fluid Mech. 87, 719

    Article  ADS  MATH  Google Scholar 

  • Fox, D. G., Orszag, S. A. (1973): In viscid dynamics of two-dimensional turbulence. Phys. Fluids 16,169

    Google Scholar 

  • Gage, K. S. (1979): Evidence for a k-513 law inertial range in meso-scale two-dimensional turbulence. J. Atmos. Sci. 36, 1950

    Google Scholar 

  • Gilet, M., Nicoloff, S., Klaus, V.: Dual Doppler Radar Measurements of Winds and Turbulence a Head of a Cold Front, in 19th Conf. on Radar Met. ( AMS, Boston 1980 ) p. 30

    Google Scholar 

  • Herring, J. R. (1977): On the statistical theory of two-dimensional topographic turbulence. J. Atmos. Sci. 34, 1731

    Article  ADS  Google Scholar 

  • Herring, J. R. (1980): On the statistical theory of quasi-geostrophic turbulence. J. Atmos. Sci. 37, 969

    Article  MathSciNet  Google Scholar 

  • Herring, J. R., Schertzer, D., Lesieur, M., Newman, G. R., Chollet, J. P., Larchevêque, M. (1982): A comparative assessment of spectral closures as applied to passive scalar diffusion. J. Phys. Math. 124, 411

    MATH  Google Scholar 

  • Holloway, G., Hendershot, M. C. (1974): The effects of topography on barotropic eddy fields. Mode Hot Line News 75

    Google Scholar 

  • Kahane, J. P. (1974): Sur le modèle de turbulence de Benoit Mandelbrot. C.R. Acad. Sci. Paris A, 278, 621

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A. N. (1962): A refinement of a previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82

    Google Scholar 

  • Kraichnan, R. H. (1958): The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497

    Google Scholar 

  • Kraichnan, R. H. (1964 b): Diagonalising approximation for inhomogeneous turbulence. Phys. Fluids 7, 1169

    Google Scholar 

  • Kraichnan, R. H. (1967): Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417

    Article  ADS  Google Scholar 

  • Kraichnan, R. H. (1974): On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62, 305

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Landau, L. D., Lifshitz, E. M.: Fluid Mechanics ( Pergamon, New York 1959 ) p. 340

    Google Scholar 

  • Leray, J. (1933): Etudes de diverses équations intégrales non-linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1

    MathSciNet  MATH  Google Scholar 

  • Lesieur M., Herring, J. R. (1984): Diffusion of a passive scalar in two-dimensional turbulence. J. Fluid Mech. (submitted)

    Google Scholar 

  • Lesieur, M., Sommeria, J., Holloway, G. (1981): Zones inertielles du spectre d’un contaminant passif en turbulence bidimensionalle. C.R. Acad. Sei. Paris 292, Ser. II, 271

    Google Scholar 

  • Levy, P.: Théorie de raddition des variables aléatoires ( Gauthier Villars, Paris 1937 ) p. 384

    Google Scholar 

  • Lilly, D. K. (1983): Stratified turbulence and the meso-scale of the atmosphere. J. Atmos. Sei. 40, 3, 749

    Article  ADS  Google Scholar 

  • Lorentz, E. N. (1963): Deterministic non-periodic flow. J. Atmos. Sei. 30, 131

    Google Scholar 

  • Lovejoy, S.: A Statistical Analysis of Rain Areas in Terms of Fractals, in 20th Conf. on Radar Met. (AMS, Boston 1981 ) p. 476

    Google Scholar 

  • Lovejoy, S. (1982): The area-perimeter relation for rain and cloud areas. Science 216, 185

    Article  ADS  Google Scholar 

  • Lovejoy, S., Mandelbrot, B. (1984): Fractal properties of rain and a fractal model. Tellus (in press).

    Google Scholar 

  • Lovejoy, S., Schertzer, D. (1984): Generalised scale invariance in the atmosphere and a fractal model of rain. Wat. Resarces Res. (submitted).

    Google Scholar 

  • MacPherson, J. I., Isaac, G. A. (1977): Turbulent characteristics of some Canadian cumulus clouds. J. Appl. Met. 16, 81

    Article  ADS  Google Scholar 

  • Mandelbrot, B., Wallis, J. R. (1968): Noah, Joseph and operational hydrology. Wat. Resour. Res. 4, 909

    Article  ADS  Google Scholar 

  • Mandelbrot, B. (1974a): Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331

    Article  ADS  MATH  Google Scholar 

  • Mandelbrot, B. (1974 b): Multiplication aléatoires itérées, et distributions invariantes par moyenne pondéré. C.R. Acad. Sei. Paris A 278, 289

    Google Scholar 

  • Mandelbrot, B.: Les Objects Fractals: Forme, Hasard et Dimension ( Flammarion, Paris 1975 ) p. 187

    Google Scholar 

  • Mandelbrot, B.: Fractals: Form, Chance and Dimension ( Freeman, San Francisco 1977 ) p. 365

    MATH  Google Scholar 

  • Mandelbrot, B.: The Fractal Geometry of Nature ( Freeman, San Francisco 1982 ) p. 461

    MATH  Google Scholar 

  • Martin, P. C., De Dominicis, C. (1978): The long distance behaviour of randomly stirred fluids. Prog. Theor. Phys. Supp. 64

    Google Scholar 

  • Merceret, F. J. (1976): The turbulent microstructure of hurricane Caroline (1975). Mon. Wea. Rev. 104, 1297

    Article  ADS  Google Scholar 

  • Monin, A. S.: Weather Forecasting as a Problem in Physics ( MIT Press, Cambridge, MA 1972 )

    Google Scholar 

  • Monin, A. S., Yaglom, A. M.: Statistical Fluid Mechanics, Vol. II (MIT Press, Cambridge, MA 1975 ) p. 566

    Google Scholar 

  • Morel, P., Larehevêque, M. (1974): Relative dispersion of constant level balloons in the 200 mb general circulation. J. Atmos. Sei. 31, 2189

    Article  ADS  Google Scholar 

  • Nastrom, G. D., Gage, K. S. (1983): A first loom at wave-number spectra from GASP data. Tellus 35: 383.

    Google Scholar 

  • Novikov, E. A., Stewart, R. W. (1964): Intermitteney of turbulence and spectrum of fluctuations of energy dissipation. Izv. Akad. Nauk. SSSR Ser. Geofiz. 3, 408

    Google Scholar 

  • Obukhov, A.N. (1959): Effect of Archimedean forces on the structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR, 125, 1246

    Google Scholar 

  • Orszag, S. A. (1970): Indeterminancy of the moment problem for intermittent turbulence. Phys. Fluids 13, 2210

    MathSciNet  ADS  Google Scholar 

  • Parisi, O., Frisch, U.: A Multifractal Model of Intermitteney, in Proc. of the Varenna School, ed. by M. Ghil (Italian Physical Soc. 1984) (in press)

    Google Scholar 

  • Peyriere, J. (1974): Turbulence et dimension de Hausdorff. C.R. Acad. Sei. Paris A 278, 567

    Google Scholar 

  • Pinus, N. Z. (1968): The energy of atmospheric macro-turbulence. Izv. Atmos. Ocean. Phys. 4, 461

    Google Scholar 

  • Richardson, L. F. (1926): Atmospheric diffusion shown on a distance neighbour graph. Proc. Roy. Soc. London A110, 709

    Google Scholar 

  • Riley, J. J., Metealf, R. W., Weissman, M. A.: Direct Simulations of Homogeneous Turbulence in Density- Stratified Fluids, in Conference on Non-Linear Properties of Internal Waves, ed. by J. West ( Am. Inst. Phys. 1981 ) p. 79

    Google Scholar 

  • Schertzer, D., S.: A Theoretical Study of Radiative Cooling in Homogeneous and Isotropic Turbulence, in Turbulent Shear Flows 3, ed. by L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt, J. H. Whitelaw ( Springer, Berlin, Heidelberg, New York 1982 ) p. 262

    Google Scholar 

  • Schertzer, D., Lovejoy, S., Thervy, G., Coifïier, J., Ernie, Y., Clochard, J. 1983: Are current NWP systems stochastically coherent? Preprint Vol. IAMAP/WMO Paris 29/8–4/9 1983, p. 325.

    Google Scholar 

  • Schertzer, D., Lovejoy, S.: On the Dimension of Atmospheric Motions (Extended Abstract), in Turbulence and Chaotic Phenomena in Fluids (Preprint Vol., IUTAM Symposium, Kyoto Univ. 1983 a) p. 141

    Google Scholar 

  • Schertzer, D., Lovejoy, S.: On the Dimension of Atmospheric Motions, in Turbulence and Chaotic Phenomena in Fluids, ed. by S. Tatsumi (North-Holland 1983 b)

    Google Scholar 

  • Schertzer, D., Lovejoy, S., Peyriere, J.: Fractales elliptiques. Preprint, Mét. Nat. EERM/CRMD ( Paris, France 1983 )

    Google Scholar 

  • Simonin, O.: Interaction turbulence, rayonnement. Ph. D. Thesis ( IMST, Marseille 1982 )

    Google Scholar 

  • Stewart, R. W., Townsend, A. A. (1951): Similarity and self-preservation in isotropic turbulence. Philos. Trans. Roy. Soc. A 243, 359

    Article  ADS  MATH  Google Scholar 

  • Tardieu, J. J. (1979): Tech. Note 23, EERM, Met. Nat., Paris

    Google Scholar 

  • Van der Hoven, J. (1957): Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Meteor. 14, 160

    Article  Google Scholar 

  • Van Zandt, T. E. (1982): A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett. 9, 575

    Article  ADS  Google Scholar 

  • Vinnichencko, N. K. (1969): The kinetic energy spectrum in the free atmosphere from 1 second to 5 years. Tellus 22, 158

    Article  ADS  Google Scholar 

  • Von Neumann, J. (1949): Recent Theories of Turbulence, in Collect. Works 6, 437

    Google Scholar 

  • Wilson, K. G. (1975): The renormalisation group: critical phenomenon and the Kondo problem. Rev. Mod. Phys. 47, 773

    Google Scholar 

  • Yaglom, A. M. (1966): The influence of the fluctuation in energy dissipation on the shape of turbulent characteristics in the inertial interval. Sov. Phys. Dokl. 2, 26

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schertzer, D., Lovejoy, S. (1985). The Dimension and Intermittency of Atmospheric Dynamics. In: Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69996-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69996-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69998-6

  • Online ISBN: 978-3-642-69996-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics