Skip to main content

Seismic Wave Propagation and Perfectly Matched Layers Using a GFDM.

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6784))

Included in the following conference series:

  • 1373 Accesses

Abstract

The interior of the Earth is heterogeneous with different material and may have complex geometry. The free surface can also be uneven. Therefore, the use of a meshless method with the possibility of using and irregular grid-point distribution can be interest for modeling this kind of problem.

This paper shows the application of GFDM to the problem of seismic wave propagation in 2-D. To use this method in unbounded domains one must truncate the computational grid-point avoiding reflection from the edges. PML absorbing boundary condition has then been included in the numerical model proposed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benito, J.J., Ureña, F., Gavete, L.: Influence several factors in the generalized finite difference method. Applied Mathematical Modeling 25, 1039–1053 (2001)

    Article  MATH  Google Scholar 

  2. Benito, J.J., Ureña, F., Gavete, L., Alvarez, R.: An h-adaptive method in the generalized finite difference. Comput. Methods Appl. Mech. Eng. 192, 735–759 (2003)

    Article  MATH  Google Scholar 

  3. Benito, J.J., Ureña, F., Gavete, L., Alonso, B.: Solving parabolic and hyperbolic equations by Generalized Finite Difference Method. Journal of Computational and Applied Mathematics 209(2), 208–233 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benito, J.J., Ureña, F., Gavete, L., Alonso, B.: Application of the Generalized Finite Difference Method to improve the approximated solution of pdes. Computer Modelling in Engineering & Sciences 38, 39–58 (2009)

    MATH  MathSciNet  Google Scholar 

  5. Berenger, J.P.: A perfectly matched layer for the absortion of electromagnetic. J. Comput. Physics 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chew, W.C., Liu, Q.H.: Perfectly matched layer for elastodynamics; a new absorbing boundary condition. J. Comput. Acoustics 4, 341–359 (1996)

    Article  Google Scholar 

  7. Jensen, P.S.: Finite difference technique for variable grids. Computer& Structures 2, 17–29 (1972)

    Article  Google Scholar 

  8. Jonshon, S.G.: Notes on Perfectly Matched Layers (PMLs). Courses 18.369 and 18.336 at MIT (July 2008)

    Google Scholar 

  9. Moczo, P., Kristek, J., Halada, L.: The finite-difference method for seismologists. An introduction, Comenius University Bratislava, 158 pgs (1994)

    Google Scholar 

  10. Moczo, P., Kristek, J., Galis, M., Pazak, P., Balazovjech, M.: The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Physica Slovaca 57(2), 177–406 (2007)

    Google Scholar 

  11. Liszka, T., Orkisz, J.: The Finite Difference Method at Arbitrary Irregular Grids and its Application in Applied Mechanics. Computer & Structures 11, 83–95 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Perrone, N., Kao, R.: A general finite difference method for arbitrary meshes. Computer& Structures 5, 45–58 (1975)

    Article  MathSciNet  Google Scholar 

  13. Skelton, E.A., Adams, S.D.M., Craster, R.V.: Guided elastic waves and perfectly matched layers. Wave motion 44, 573–592 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Benito, J.J., Ureña, F., Gavete, L.: Leading-Edge Applied Mathematical Modelling Research, ch. 7. Nova Science Publishers, New York (2008)

    Google Scholar 

  15. Orkisz, J.: Finite Difference Method (Part, III). In: Kleiber, M. (ed.) Handbook of Computational Solid Mechanics. Springer, Berlin (1998)

    Google Scholar 

  16. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  17. Knabner, P., Angerman, L.: Numerical Methods for Elliptic and Para bolic Partial Differential Equations. Texts in Applied Mathematics, vol. 44. Springer, New York (2003)

    Google Scholar 

  18. Morton, K.W., Mayers, D.F.: Numerical solution of partial differential equations: An introduction. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  19. Respondek, J.: Numerical Simulation in the Partial Differential Equations Controllability Analyssis with Physically Meaningful Constraints. Mathematics and Computers in Simulation 81(1), 120–132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Respondek, J.: Approximate controllability of the n-th order infinite dimensional systems with controls delayed by the control devices. Int. J. Systems Sci. 39(8), 765–782 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ureña, F., Benito, J.J., Salete, E., Gavete, L. (2011). Seismic Wave Propagation and Perfectly Matched Layers Using a GFDM.. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics