Skip to main content

Fast RNA Structure Alignment for Crossing Input Structures

  • Conference paper
Combinatorial Pattern Matching (CPM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5577))

Included in the following conference series:

Abstract

The complexity of pairwise RNA structure alignment depends on the structural restrictions assumed for both the input structures and the computed consensus structure. For arbitrarily crossing input and consensus structures, the problem is NP-hard. For non-crossing consensus structures, Jiang et al’s algorithm [1] computes the alignment in O(n 2 m 2) time where n and m denote the lengths of the two input sequences. If also the input structures are non-crossing, the problem corresponds to tree editing which can be solved in \(O(m^2n(1+\log\frac{n}{m}))\) time [2]. We present a new algorithm that solves the problem for d-crossing structures in O(d m 2 nlogn) time, where d is a parameter that is one for non-crossing structures, bounded by n for crossing structures, and much smaller than n on most practical examples. Crossing input structures allow for applications where the input is not a fixed structure but is given as base-pair probability matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. J. Comput. Biol. 9(2), 371–388 (2002)

    Article  Google Scholar 

  2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Washietl, S., Hofacker, I.L., Lukasser, M., Huttenhofer, A., Stadler, P.F.: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol. 23(11), 1383–1390 (2005)

    Article  Google Scholar 

  4. Consortium, A.F.B., Backofen, R., Bernhart, S.H., Flamm, C., Fried, C., Fritzsch, G., Hackermuller, J., Hertel, J., Hofacker, I.L., Missal, K., Mosig, A., Prohaska, S.J., Rose, D., Stadler, P.F., Tanzer, A., Washietl, S., Will, S.: RNAs everywhere: genome-wide annotation of structured RNAs. J. Exp. Zoolog B Mol. Dev. Evol. 308(1), 1–25 (2007)

    Google Scholar 

  5. Waterman, M., Smith, T.: RNA secondary structure: a complete mathematical analysis. Math. Biosci. 42, 257–266 (1978)

    Article  MATH  Google Scholar 

  6. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  7. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

  8. Akutsu, T.: Approximation and exact algorithms for RNA secondary structure prediction and recognition of stochastic context-free languages. Journal of Combinatorial Optimization 3, 321–336 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wexler, Y., Zilberstein, C., Ziv-Ukelson, M.: A study of accessible motifs and RNA folding complexity. Journal of Computational Biology 14(6), 856–872 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)

    Article  Google Scholar 

  11. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5, 140 (2004)

    Article  Google Scholar 

  12. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary structure prediction for aligned RNA sequences. Journal of Molecular Biology 319(5), 1059–1066 (2002)

    Article  Google Scholar 

  13. Seemann, S.E., Gorodkin, J., Backofen, R.: Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Research (2008)

    Google Scholar 

  14. Klein, P.: Computing the edit-distance between unrooted ordered trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

    Google Scholar 

  15. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology 317(2), 191–203 (2002)

    Article  Google Scholar 

  17. Havgaard, J.H., Lyngso, R.B., Stormo, G.D., Gorodkin, J.: Pairwise local structural alignment of RNA sequences with sequence similarity less than 40. Bioinformatics 21(9), 1815–1824 (2005)

    Article  Google Scholar 

  18. Ziv-Ukelson, M.I., Gat-Viks, Y.W., Shamir, R.: A faster algorithm for RNA co-folding. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 174–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLOS Computational Biology 3(4), e65 (2007)

    Article  Google Scholar 

  20. Evans, P.A.: Finding common rna pseudoknot structures in polynomial time. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 223–232. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Evans, P.A.: Algorithms and Complexity for Annotated Sequence Analysis. PhD thesis, University of Alberta (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backofen, R., Landau, G.M., Möhl, M., Tsur, D., Weimann, O. (2009). Fast RNA Structure Alignment for Crossing Input Structures. In: Kucherov, G., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 2009. Lecture Notes in Computer Science, vol 5577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02441-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02441-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02440-5

  • Online ISBN: 978-3-642-02441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics