Skip to main content

Almost Convex Functions: Conjugacy and Duality

  • Conference paper
Generalized Convexity and Related Topics

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 583))

Summary

We prove that the formulae of the conjugates of the precomposition with a linear operator, of the sum of finitely many functions and of the sum between a function and the precomposition of another one with a linear operator hold even when the convexity assumptions are replaced by almost convexity or nearly convexity. We also show that the duality statements due to Fenchel hold when the functions involved are taken only almost convex, respectively nearly convex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleman A (1985) On some generalizations of convex sets and convex functions. Mathematica-Revue d’Analyse Numérique et de la Théorie de l’Approximation 14:1–6

    MATH  MathSciNet  Google Scholar 

  2. Blaga L, Kolumbán J (1994) Optimization on closely convex sets. In: Generalized Convexity (Pécs, 1992), Lecture Notes in Economics and Mathematical Systems 405. Springer, Berlin, pp. 19–34

    Google Scholar 

  3. Botţ RI, Grad SM, Wanka G (2005) Fenchel’s duality theorem for nearly convex functions. Preprint 13/2005, Faculty of Mathematics, Chemnitz University of Technology

    Google Scholar 

  4. Botţ RI, Kassay G, Wanka G (2005) Strong duality for generalized convex optimization problems. Journal of Optimization Theory and Applications 127(1):45–70

    Article  MathSciNet  Google Scholar 

  5. Botţ RI, Wanka G (2006) A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Analysis: Theory, Methods & Applications 64(12):2787–2804

    Article  MathSciNet  Google Scholar 

  6. Breckner WW, Kassay G (1997) A systematization of convexity concepts for sets and functions. Journal of Convex Analysis 4(1):109–127

    MATH  MathSciNet  Google Scholar 

  7. Cobzaaş Ş, Muntean I (1987) Duality relations and characterizations of best approximation for p-convex sets. L’Analyse Numérique et la Théorie de l’Approximation 16(2):95–108

    Google Scholar 

  8. Frenk JBG, Kassay G (2005) Introduction to convex and quasiconvex analysis. In: Handbook of Generalized Convexity and Generalized Monotonicity, Nonconvex Optimization and its Applications 76. Springer, New York, pp. 3–87

    Chapter  Google Scholar 

  9. Frenk JBG, Kassay G, Lagrangian duality and convexlike functions. Journal of Optimization Theory and Applications (to appear)

    Google Scholar 

  10. Frenk JBG, Kassay G (2002) Minimax results and finite-dimensional separation. Journal of Optimization Theory and Applications 113(2):409–421

    Article  MATH  MathSciNet  Google Scholar 

  11. Hamel G (1905) Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x + y) = f(x) + f(y). Mathematische Annalen 60:459–462

    Article  MATH  MathSciNet  Google Scholar 

  12. Jeyakumar V, Gwinner J (1991) Inequality systems and optimization. Journal of Mathematical Analysis and Applications 159(1):51–71

    Article  MATH  MathSciNet  Google Scholar 

  13. Kolumbán J, Blaga L (1990) On the weakly convex sets. Studia Universitatis Babeaş-Bolyai Mathematica 35(4):13–20

    MATH  Google Scholar 

  14. Muntean I (1985) Support points of p-convex sets. In: Proceedings of the Colloquium on Approximation and Optimization (Cluj-Napoca, 1985). University of Cluj-Napoca, Cluj-Napoca, pp. 293–302

    Google Scholar 

  15. Paeck S (1992) Convexlike and concavelike conditions in alternative, minimax, and minimization theorems. Journal of Optimization Theory and Applications 74(2):317–332

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  17. Sach PH (2005) New generalized convexity notion for set-valued maps and application to vector optimization. Journal of Optimization Theory and Applications 125(1):157–179

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boţ, R.I., Grad, SM., Wanka, G. (2007). Almost Convex Functions: Conjugacy and Duality. In: Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, vol 583. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37007-9_5

Download citation

Publish with us

Policies and ethics