Skip to main content

Robust Data-Driven Control of Artificial Pancreas Systems Using Neural Networks

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11095))

Included in the following conference series:

Abstract

In this paper, we provide an approach to data-driven control for artificial pancreas systems by learning neural network models of human insulin-glucose physiology from available patient data and using a mixed integer optimization approach to control blood glucose levels in real-time using the inferred models. First, our approach learns neural networks to predict the future blood glucose values from given data on insulin infusion and their resulting effects on blood glucose levels. However, to provide guarantees on the resulting model, we use quantile regression to fit multiple neural networks that predict upper and lower quantiles of the future blood glucose levels, in addition to the mean.

Using the inferred set of neural networks, we formulate a model-predictive control scheme that adjusts both basal and bolus insulin delivery to ensure that the risk of harmful hypoglycemia and hyperglycemia are bounded using the quantile models while the mean prediction stays as close as possible to the desired target. We discuss how this scheme can handle disturbances from large unannounced meals as well as infeasibilities that result from situations where the uncertainties in future glucose predictions are too high. We experimentally evaluate this approach on data obtained from a set of 17 patients over a course of 40 nights per patient. Furthermore, we also test our approach using neural networks obtained from virtual patient models available through the UVA-Padova simulator for type-1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 49.99
Price excludes VAT (USA)
Softcover Book
USD 64.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016). http://arxiv.org/abs/1603.04467

  2. Atlas, E., Nimri, R., Miller, S., Grunberg, E.A., Phillip, M.: MD-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diab. Care 33(5), 1072–1076 (2010)

    Article  Google Scholar 

  3. Behl, M., Jain, A., Mangharam, R.: Data-driven modeling, control and tools for cyber-physical energy systems. In: Proceedings of the 7th International Conference on Cyber-Physical Systems, ICCPS 2016, pp. 35:1–35:10. IEEE Press, Piscataway (2016)

    Google Scholar 

  4. Bequette, B.W.: Algorithms for a closed-loop artificial pancreas: the case for model predictive control. J. Diab. Sci. Technol. 7, 1632–1643 (2013)

    Article  Google Scholar 

  5. Bergman, R.N., Urquhart, J.: The pilot gland approach to the study of insulin secretory dynamics. Recent Progress Hormon. Res. 27, 583–605 (1971)

    Google Scholar 

  6. Bergman, R.N.: Minimal model: perspective from 2005. Hormon. Res. 64(suppl 3), 8–15 (2005)

    Google Scholar 

  7. Bhat, N., McAvoy, T.J.: Use of neural nets for dynamic modeling and control of chemical process systems. Comput. Chem. Eng. 14(4–5), 573–582 (1990)

    Article  Google Scholar 

  8. Camacho, E., Bordons, C., Alba, C.: Model Predictive Control. Advanced Textbooks in Control and Signal Processing. Springer, London (2004). https://doi.org/10.1007/978-0-85729-398-5

    Book  MATH  Google Scholar 

  9. Cameron, F., Niemeyer, G., Bequette, B.W.: Extended multiple model prediction with application to blood glucose regulation. J. Process Control 22(8), 1422–1432 (2012)

    Article  Google Scholar 

  10. Cameron, F., et al.: Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. J. Diab. Sci. Technol. 6(5), 1142–1147 (2012)

    Article  Google Scholar 

  11. Chase, H.P., Maahs, D.: Understanding Diabetes (Pink Panther Book), 12 edn. Children’s Diabetes Foundation, Denver (2011). Available online through CU Denver Barbara Davis Center for Diabetes

    Google Scholar 

  12. Chee, F., Fernando, T.: Closed-Loop Control of Blood Glucose. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74031-5

    Book  MATH  Google Scholar 

  13. Chen, X., Dutta, S., Sankaranarayanan, S.: Formal verification of a multi-basal insulin infusion control model. In: Workshop on Applied Verification of Hybrid Systems (ARCH), p. 16. Easychair (2017)

    Google Scholar 

  14. Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., Nicolao, G.D., Kovatchev, B.P.: Diabetes: models, signals and control (methodological review). IEEE Rev. Biomed. Eng. 2, 54–95 (2009)

    Article  Google Scholar 

  15. Dalla Man, C., Camilleri, M., Cobelli, C.: A system model of oral glucose absorption: validation on gold standard data. IEEE Trans. Biomed. Eng. 53(12), 2472–2478 (2006)

    Article  Google Scholar 

  16. Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C.: The UVa/Padova type I diabetes simulator: new features. J. Diab. Sci. Technol. 8(1), 26–34 (2014)

    Article  Google Scholar 

  17. Dalla Man, C., Raimondo, D.M., Rizza, R.A., Cobelli, C.: Gim, simulation software of meal glucose-insulin model (2007)

    Google Scholar 

  18. Dalla Man, C., Rizza, R.A., Cobelli, C.: Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 1(10), 1740–1749 (2006)

    Article  Google Scholar 

  19. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_9

    Chapter  Google Scholar 

  20. Freeman, J.S.: Insulin analog therapy: improving the match with physiologic insulin secretion. J. Am. Osteopath. Assoc. 109(1), 26–36 (2009)

    Google Scholar 

  21. Garg, S.K., et al.: Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diab. Technol. Ther. 19(3), 1–9 (2017)

    Article  Google Scholar 

  22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  23. Griva, L., Breton, M., Chernavvsky, D., Basualdo, M.: Commissioning procedure for predictive control based on arx models of type 1 diabetes mellitus patients. IFAC-PapersOnLine 50(1), 11023–11028 (2017)

    Article  Google Scholar 

  24. van Heusden, K., Dassau, E., Zisser, H.C., Seborg, D.E., Doyle III, F.J.: Control-relevant models for glucose control using a priori patient characteristics. IEEE Trans. Biomed. Eng. 59(7), 1839–1849 (2012)

    Google Scholar 

  25. Hakami, H.: FDA approves MINIMED 670G system - world’s first hybrid closed loop system (2016)

    Google Scholar 

  26. Hovorka, R., et al.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Measur. 25, 905–920 (2004)

    Article  Google Scholar 

  27. Hovorka, R., et al.: Partitioning glucose distribution/transport, disposal and endogenous production during IVGTT. Am. J. Physiol. Endocrinol. Metab. 282, 992–1007 (2002)

    Article  Google Scholar 

  28. Hovorka, R.: Continuous glucose monitoring and closed-loop systems. Diab. Med. 23(1), 1–12 (2005)

    Article  Google Scholar 

  29. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  30. Koenker, R.: Quantile Regression. Econometric Society Monographs, no. 38, p. 342 (2005)

    Google Scholar 

  31. Kowalski, A.: Pathway to artificial pancreas revisited: moving downstream. Diab. Care 38, 1036–1043 (2015)

    Article  Google Scholar 

  32. Kushner, T., Bortz, D., Maahs, D., Sankaranarayanan, S.: A data-driven approach to artificial pancreas verification and synthesis. In: International Conference on Cyber-Physical Systems (ICCPS 2018). IEEE Press (2018)

    Google Scholar 

  33. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward relu neural networks. CoRR abs/1706.07351 (2017). http://arxiv.org/abs/1706.07351

  34. Maahs, D.M., et al.: A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diab. Care 37(7), 1885–1891 (2014)

    Article  Google Scholar 

  35. Medtronic Inc.: “paradigm” insulin pump with low glucose suspend system (2012). cf. http://www.medtronicdiabetes.ca/en/paradigm_veo_glucose.html

  36. Nimri, R., et al.: Night glucose control with md-logic artificial pancreas in home setting: a single blind, randomized crossover trial-interim analysis. Pediatric Diab. 15(2), 91–100 (2014)

    Article  Google Scholar 

  37. Paoletti, N., Liu, K.S., Smolka, S.A., Lin, S.: Data-driven robust control for type 1 diabetes under meal and exercise uncertainties. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 214–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_13

    Chapter  Google Scholar 

  38. Patek, S., et al.: In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus. J. Diab. Sci. Technol. 3(2), 269–82 (2009)

    Article  Google Scholar 

  39. Pérez-Gandía, C., et al.: Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diab. Technol. Ther. 12(1), 81–88 (2010)

    Article  Google Scholar 

  40. Piche, S., Sayyar-Rodsari, B., Johnson, D., Gerules, M.: Nonlinear model predictive control using neural networks. IEEE Control Syst. 20(3), 53–62 (2000)

    Article  Google Scholar 

  41. Psichogios, D.C., Ungar, L.H.: Direct and indirect model based control using artificial neural networks. Indus. Eng. Chem. Res. 30(12), 2564–2573 (1991)

    Article  Google Scholar 

  42. Ruiz, J.L., et al.: Effect of insulin feedback on closed-loop glucose control: a crossover study. J. Diab. Sci. Technol. 6(5), 1123–1130 (2012)

    Article  Google Scholar 

  43. Steil, G.M., Rebrin, K., Darwin, C., Hariri, F., Saad, M.F.: Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55, 3344–3350 (2006)

    Article  Google Scholar 

  44. Teixeira, R.E., Malin, S.: The next generation of artificial pancreas control algorithms. J. Diabetes Sci. Tech. 2, 105–112 (2008)

    Article  Google Scholar 

  45. Vanderbei, R.J.: Linear Programming: Foundations & Extensions, Second Edn. Springer, Heidelberg (2001). https://doi.org/10.1007/978-1-4614-7630-6, cf. http://www.princeton.edu/~rvdb/LPbook/

  46. Visentin, R., Dalla Man, C., Cobelli, C.: One-day Bayesian cloning of type 1 diabetes subjects: toward a single-day UVa/Padova type 1 diabetes simulator. IEEE Trans. Biomed. Eng. 63(11), 2416–2424 (2016)

    Article  Google Scholar 

  47. Wang, T., Gao, H., Qiu, J.: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 416–425 (2016)

    Article  MathSciNet  Google Scholar 

  48. Weinzimer, S., Steil, G., Swan, K., Dziura, J., Kurtz, N., Tamborlane, W.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diab. Care 31, 934–939 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Foundation (NSF) through awards 1446900, 1646556, and 1815983. All opinions expressed are those of the authors and not necessarily of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisa Kushner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dutta, S., Kushner, T., Sankaranarayanan, S. (2018). Robust Data-Driven Control of Artificial Pancreas Systems Using Neural Networks. In: Češka, M., Šafránek, D. (eds) Computational Methods in Systems Biology. CMSB 2018. Lecture Notes in Computer Science(), vol 11095. Springer, Cham. https://doi.org/10.1007/978-3-319-99429-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99429-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99428-4

  • Online ISBN: 978-3-319-99429-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics