Skip to main content

Peridynamics and Nonlocal Diffusion Models: Fast Numerical Methods

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

We outline the recent developments of fast numerical methods for linear nonlocal diffusion and peridynamic models in one and two space dimensions. We show how the analysis was carried out to take full advantage of the structure of the stiffness matrices of the numerical methods in its storage, evaluation, and assembly and in the efficient solution of the corresponding numerical schemes. This significantly reduces the computational complexity and storage of the numerical methods over conventional ones, without using any lossy compression. For instance, we would use the same numerical quadratures for conventional methods to evaluate the singular integrals in the stiffness matrices, except that we only need to evaluate O(N) of them instead of O(N 2) of them. Numerical results are presented to show the utility of these fast methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 799.99
Price excludes VAT (USA)
Hardcover Book
USD 999.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • D. Applebaum, Lévy Processes and Stochastic Calculus (Cambridge University Press, Cambridge/New York , 2009)

    Book  Google Scholar 

  • H.G. Chan, M.K. Ng, Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  Google Scholar 

  • S. Chen, F. Liu, X. Jiang, I. Turner, V. Anh, A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients. Appl. Math. Comp. 257, 591–601 (2015)

    Article  MathSciNet  Google Scholar 

  • X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237–1250 (2011)

    Article  MathSciNet  Google Scholar 

  • K. Dayal, K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)

    Article  MathSciNet  Google Scholar 

  • D. del-Castillo-Negrete, B.A. Carreras, V.E. Lynch, Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)

    Article  Google Scholar 

  • M. D’Elia, R. Lehoucq, M. Gunzburger, Q. Du, Finite range jump processes and volume-constrained diffusion problems, Sandia National Labs SAND, 2014–2584 (Sandia National Laboratories, Albuquerque/Livermore, 2014)

    Google Scholar 

  • Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  • Q. Du, L. Ju, L. Tian, K. Zhou, A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comp. 82, 1889–1922 (2013)

    Article  MathSciNet  Google Scholar 

  • E. Emmrich, O. Weckner, The peridynamic equation and its spatial discretisation. Math. Model. Anal. 12, 17–27 (2007)

    Article  MathSciNet  Google Scholar 

  • W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)

    Article  Google Scholar 

  • M. Ghajari, L. Iannucci, P. Curtis, A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)

    Article  MathSciNet  Google Scholar 

  • Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)

    Article  Google Scholar 

  • J. Jia, C. Wang, H. Wang, A fast locally refined method for a space-fractional diffusion equation. # IE0147, ICFDA’14 Catania, 23–25 June 2014. Copyright 2014 IEEE ISBN:978-1-4799-2590-2

    Google Scholar 

  • J. Jia, H. Wang, A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)

    Article  MathSciNet  Google Scholar 

  • X. Lai, B. Ren, H. Fan, S. Li, C.T. Wu, R.A. Regueiro, L. Liu, Peridynamics simulations of geomaterial fragmentation by impulse loads. Int. J. Numer. Anal. Meth. Geomech 39, 1304–1330 (2015)

    Article  Google Scholar 

  • M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus (De Gruyter, Berlin, 2011)

    Book  Google Scholar 

  • R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  • B. Øksendal, Stochastic Differential Equations: An Introduction with Applications (Springer, Heidelberg, 2010)

    MATH  Google Scholar 

  • E. Oterkus, E. Madenci, O. Weckner, S.A. Silling, P. Bogert, Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos. Struct. 94, 839–850 (2012)

    Article  Google Scholar 

  • M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S.A. Silling, Implementing peridynamics within a molecular dynamics code. Comp. Phys. Comm. 179, 777–783 (2008)

    Article  Google Scholar 

  • M.L. Parks, P. Seleson, S.J. Plimpton, S.A. Silling, R.B. Lehoucq, Peridynamics with LAMMPS: a user guide v0.3 beta, SAND report 2011–8523 (Sandia National Laboratories, Albuquerque/Livermore, 2011)

    Google Scholar 

  • I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  • P. Seleson, Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations. Comput. Methods Appl. Mech. Eng. 282, 184–217 (2014)

    Article  MathSciNet  Google Scholar 

  • P. Seleson, Q. Du, M.L. Parks, On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models. Comput. Methods Appl. Mech. Eng. 311, 698–722 (2016)

    Article  MathSciNet  Google Scholar 

  • P. Seleson, D. Littlewood, Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71, 2432–2448 (2016)

    Article  MathSciNet  Google Scholar 

  • P. Seleson, M.L. Parks, On the role of the infuence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)

    Article  Google Scholar 

  • P. Seleson, M.L. Parks, M. Gunzburger, R.B. Lehoucq, Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. 8, 204–227 (2009)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, Reformulation of elasticity theory for discontinuous and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  • S.A. Silling, M. Epton, O. Wecker, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

    Article  Google Scholar 

  • S. Sun, V. Sundararaghavan, A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)

    Article  Google Scholar 

  • H. Tian, H. Wang, W. Wang, An efficient collocation method for a non-local diffusion model. Int. J. Numer. Anal. Model. 10, 815–825 (2013)

    MathSciNet  MATH  Google Scholar 

  • X. Tian, Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)

    Article  MathSciNet  Google Scholar 

  • C. Wang, H. Wang, A fast collocation method for a variable-coefficient nonlocal diffusion model. J. Comput. Phys. 330, 114–126 (2017)

    Article  MathSciNet  Google Scholar 

  • H. Wang, T.S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  Google Scholar 

  • H.Wang, N. Du, Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2013)

    Article  MathSciNet  Google Scholar 

  • H. Wang, H. Tian, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. 231, 7730–7738 (2012)

    Article  MathSciNet  Google Scholar 

  • H. Wang, H. Tian, A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Comput. Methods Appl. Mech. Eng. 273, 19–36 (2014)

    Article  MathSciNet  Google Scholar 

  • H. Wang, K. Wang, T. Sircar, A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Google Scholar 

  • Q. Yang, I. Turner, F. Liu, M. Ilis, Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  Google Scholar 

  • Q. Yang, I. Turner, T. Moroney F. Liu, A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations. Appl. Math. Model. 38, 3755–3762 (2014)

    Article  MathSciNet  Google Scholar 

  • X. Zhang, H. Wang, A fast method for a steady-state bond-based peridynamic model. Comput. Methods Appl. Mech. Eng. 311, 280–303 (2016)

    Article  Google Scholar 

  • X. Zhang, M. Gunzburger, L. Ju, Nodal-type collocation methods for hypersingular integral equations and nonlocal diffusion problems. Comput. Methods Appl. Mech. Eng. 299, 401–420 (2016)

    Article  MathSciNet  Google Scholar 

  • K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary condition. SIAM J. Numer. Anal. 48, 1759–1780 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the OSD/ARO MURI under grant W911NF-15-1-0562 and by the National Science Foundation under grants DMS-1620194 and DMS-1216923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, H. (2019). Peridynamics and Nonlocal Diffusion Models: Fast Numerical Methods. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_35

Download citation

Publish with us

Policies and ethics