Skip to main content

Functional Differential Equations with Piecewise Constant Argument

  • Chapter
  • First Online:
Regularity and Stochasticity of Nonlinear Dynamical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 21))

Abstract

We introduce a new class of functional differential equations with functional response on piecewise constant argument, \({ FDEPCA}\). It contains functional differential equations with continuous time [21, 25, 28, 31] as well as differential equations with piecewise constant argument [1, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 22, 22, 23]. We concentrate only on retarded equations, but one can easily extend the discussion to any type of piecewise constant argument and functional differential equations. Nonlinear and quasilinear systems are under consideration. At the end of the chapter, we suggest how one can apply the systems for solution of real-world problems, provided more general systems for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhmet, M.U.: On the integral manifolds of the differential equations with piecewise constant argument of generalized type. In: Agarval, R.P., Perera, K. (eds.) Proceedings of the Conference on Differential and Difference Equations at the Florida Institute of Technology, pp. 11–20. Hindawi Publishing Corporation (2006)

    Google Scholar 

  2. Akhmet, M.U.: Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 66, 367–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhmet, M.U.: On the reduction principle for differential equations with piecewise constant argument of generalized type. J. Math. Anal. Appl. 336, 646–663 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akhmet, M.U.: Stability of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. TMA 68, 794–803 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akhmet, M.U.: Almost periodic solutions of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. HS 2, 456–467 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Akhmet, M.U.: Asymptotic behavior of solutions of differential equations with piecewise constant arguments. Appl. Math. Lett. 21, 951–956 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Akhmet, M.U.: Almost periodic solutions of the linear differential equation with piecewise constant argument. Discret. Impuls. Syst. Ser. A, Math. Anal. 16, 743–753 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Akhmet, M.U.: Nonlinear Hybrid Continuous/Discrete Time Models. Antlantis Press, Amsterdam (2011)

    Book  MATH  Google Scholar 

  9. Akhmet, M.U.: Exponentially dichotomous linear systems of differential equations with piecewise constant argument. Discontinuity, Nonlinearity Complex. 1, 337–352 (2012)

    Article  MATH  Google Scholar 

  10. Akhmet, M.U.: Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Commun. Pure Appl. Anal. 13, 929–947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Akhmet, M.U., Aruğaslan, D.: Lyapunov–Razumikhin method for differential equations with piecewise constant argument. Discrete Contin. Dyn. Syst. 25, 457–466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Akhmet, M.U., Aruğaslan, D., Yilmaz, E.: Stability in cellular neural networks with piecewise constant argument. J. Comput. Appl. Math. 233, 2365–2373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Akhmet, M.U., Aruğaslan, D., Yilmaz, E.: Stability analysis of recurrent neural networks with piecewise constant argument of generalized type. Neural Netw. 23, 805–811 (2010)

    Article  MATH  Google Scholar 

  14. Akhmet, M.U., Aruğaslan, D., Yilmaz, E.: Method of Lyapunov functions for differential equations with piecewise constant delay. J. Comput. Appl. Math. 235, 4554–4560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Akhmet, M.U., Buyukadali, C.: Differential equations with a state-dependent piecewise constant argument. Nonlinear Anal. TMA 72, 4200–4210 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Akhmet, M.U., Buyukadali, C.: Periodic solutions of the system with piecewise constant argument in the critical case. Comput. Math. Appl. 56, 2034–2042 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Akhmet, M.U., Buyukadali, C., Ergenc, T.: Periodic solutions of the hybrid system with small parameter. Nonlinear Anal. HS 2, 532–543 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Akhmetov, M. U., Perestyuk, N.A., Samoilenko, A.M. : Almost-periodic solutions of differential equations with impulse action (Russian). Akad. Nauk Ukrain. SSR Inst. Mat. Preprint, no. 26. p. 49 (1983)

    Google Scholar 

  19. Alonso, A., Hong, J., Obaya, R.: Almost periodic type solutions of differential equations with piecewise constant argument via almost periodic type sequences. Appl. Math. Lett. 13, 131–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bao, G., Wen, S., Zeng, Z.: Robust stability analysis of interval fuzzy CohenGrossberg neural networks with piecewise constant argument of generalized type. Neural Netw. 33, 32–41 (2012)

    Article  MATH  Google Scholar 

  21. Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  22. Busenberg, S., Cooke, K.L.: Models of vertically transmitted diseases with sequential-continuous dynamics. Nonlinear Phenomena in Mathematical Sciences. Academic Press, New York (1982)

    Google Scholar 

  23. Cooke, K.L., Wiener, J.: Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl. 99, 265–297 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dai, L.: Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  25. Diekmann, O., van Gils, S.A., Verduyn, L., Sjoerd, M., Walther, H.-O.: Delay Equations. Functional, Complex, and Nonlinear Analysis. Applied Mathematical Sciences, vol. 110. Springer, New York (1995)

    MATH  Google Scholar 

  26. Dai, L., Singh, M.C.: On oscillatory motion of spring-mass systems subjected to piecewise constant forces. J. Sound Vibration 173, 217–232 (1994)

    Article  MATH  Google Scholar 

  27. Dunkel, G.: Single-species model for population growth depending on past history. Seminar of Differential Equations and Dynamical Systems. Lecture Notes in Mathematics, vol. 60. Springer, Berlin (1968)

    Google Scholar 

  28. Elsgolts, L.E. : Introduction to the Theory of Differential Equations with Deviating Arguments. Holden-Day, Inc. (1966)

    Google Scholar 

  29. Gopalsamy, K., Zhang, B.G.: On a neutral delay logistic equation. Dyn. Stab. Syst. 2, 183–195 (1988)

    MathSciNet  MATH  Google Scholar 

  30. Halanay, A., Wexler, D.: Qualitative Theory of Impulsive Systems (Russian). Mir, Moscow (1971)

    MATH  Google Scholar 

  31. Hale, J., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993). Wiley, New York (1964)

    Book  MATH  Google Scholar 

  32. Fink, A.M.: Almost-Periodic Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  33. Kolmanovskii, V.B.: Stability of Functional Differential Equations. Academic Press, Orlando (1986)

    Google Scholar 

  34. Krasovskii, N.N.: Certain problems in the theory of stability of motion. (Russian) Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow (1959)

    Google Scholar 

  35. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)

    MATH  Google Scholar 

  36. Küpper, T., Yuan, R.: On quasi-periodic solutions of differential equations with piecewise constant argument. J. Math. Anal. Appl. 267, 173–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Papaschinopoulos, G.: Some results concerning a class of differential equations with piecewise constant argument. Math. Nachr. 166, 193–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pinto, M.: Asymptotic equivalence of nonlinear and quasi linear differential equations with piecewise constant arguments. Math. Comput. Modelling 49, 1750–1758 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Samoilenko, A., Perestyuk, N.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  40. Seifert, G.: Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence. J. Differ. Equ. 164, 451–458 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, G.: Periodic solutions of a neutral differential equation with piecewise constant arguments. J. Math. Anal. Appl. 326, 736–747 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, G.Q., Cheng, S.S.: Note on the set of periodic solutions of a delay differential equation with piecewise constant argument. Int. J. Pure Appl. Math. 9, 139–143 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Wang, G.Q., Cheng, S.S.: Existence of periodic solutions for a neutral differential equation with piecewise constant argument. Funkcial. Ekvac. 48, 299–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, L., Yuan, R., Zhang, C.: Corrigendum to: “on the spectrum of almost periodic solution of second order scalar functional differential equations with piecewise constant argument” [J. Math. Anal. Appl. 303 (2005), 103–118, by Yuan, R.]. J. Math. Anal. Appl. 349, 299 (2009)

    Google Scholar 

  45. Wang, Y., Yan, J.: Oscillation of a differential equation with fractional delay and piecewise constant argument. Comput. Math. Appl. 52, 1099–1106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Z., Wu, J.: The stability in a logistic equation with piecewise constant arguments. Differ. Equ. Dyn. Syst. 14, 179–193 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Wiener, J.: Generalized Solutions of Functional Differential Equations. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Akhmet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Akhmet, M.U. (2018). Functional Differential Equations with Piecewise Constant Argument. In: Volchenkov, D., Leoncini, X. (eds) Regularity and Stochasticity of Nonlinear Dynamical Systems. Nonlinear Systems and Complexity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-58062-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58062-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58061-6

  • Online ISBN: 978-3-319-58062-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics