Skip to main content

Cooperative Coevolution of Control for a Real Multirobot System

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

The potential of cooperative coevolutionary algorithms (CCEAs) as a tool for evolving control for heterogeneous multirobot teams has been shown in several previous works. The vast majority of these works have, however, been confined to simulation-based experiments. In this paper, we present one of the first demonstrations of a real multirobot system, operating outside laboratory conditions, with controllers synthesised by CCEAs. We evolve control for an aquatic multirobot system that has to perform a cooperative predator-prey pursuit task. The evolved controllers are transferred to real hardware, and their performance is assessed in a non-controlled outdoor environment. Two approaches are used to evolve control: a standard fitness-driven CCEA, and novelty-driven coevolution. We find that both approaches are able to evolve teams that transfer successfully to the real robots. Novelty-driven coevolution is able to evolve a broad range of successful team behaviours, which we test on the real multirobot system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/BioMachinesLab/drones/tree/master/JBotAquatic.

  2. 2.

    Videos and logs of the experiments: http://dx.doi.org/10.5281/zenodo.49582.

References

  1. Costa, V., Duarte, M., Rodrigues, T., Oliveira, S.M., Christensen, A.L.: Design and development of an inexpensive aquatic swarm robotics system. In: OCEANS 2016-Shanghai, pp. 1–7. IEEE Press (2016)

    Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS ONE 11(3), e0151834 (2016)

    Article  Google Scholar 

  4. Gomes, J., Mariano, P., Christensen, A.L.: Avoiding convergence in cooperative coevolution with novelty search. In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1149–1156. IFAAMAS (2014)

    Google Scholar 

  5. Gomes, J., Mariano, P., Christensen, A.L.: Cooperative coevolution of morphologically heterogeneous robots. In: European Conference on Artificial Life, pp. 312–319. MIT Press (2015)

    Google Scholar 

  6. Gomes, J., Mariano, P., Christensen, A.L.: Devising effective novelty search algorithms: a comprehensive empirical study. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 943–950. ACM Press (2015)

    Google Scholar 

  7. Gomes, J., Mariano, P., Christensen, A.L.: Novelty-driven cooperative coevolution. Evol. Comput. (2016, in press)

    Google Scholar 

  8. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)

    Article  Google Scholar 

  9. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  10. Nitschke, G.: Designing emergent cooperation: a pursuit-evasion game case study. Artif. Life Robot. 9(4), 222–233 (2005)

    Article  Google Scholar 

  11. Nitschke, G.S., Eiben, A.E., Schut, M.C.: Evolving team behaviors with specialization. Genet. Program. Evolvable Mach. 13(4), 493–536 (2012)

    Article  Google Scholar 

  12. Nitschke, G.S., Schut, M.C., Eiben, A.E.: Collective neuro-evolution for evolving specialized sensor resolutions in a multi-rover task. Evol. Intell. 3(1), 13–29 (2010)

    Article  Google Scholar 

  13. Nitschke, G.S., Schut, M.C., Eiben, A.E.: Evolving behavioral specialization in robot teams to solve a collective construction task. Swarm Evol. Comput. 2, 25–38 (2012)

    Article  Google Scholar 

  14. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-Agent Syst. 11(3), 387–434 (2005)

    Article  Google Scholar 

  15. Panait, L., Luke, S., Wiegand, R.P.: Biasing coevolutionary search for optimal multiagent behaviors. IEEE Trans. Evol. Comput. 10(6), 629–645 (2006)

    Article  Google Scholar 

  16. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary principles. In: Rozenberg, G., Back, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 987–1033. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  18. Potter, M.A., Meeden, L.A., Schultz, A.C.: Heterogeneity in the coevolved behaviors of mobile robots: the emergence of specialists. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1337–1343. Morgan Kaufmann (2001)

    Google Scholar 

  19. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

    Article  Google Scholar 

  20. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  21. Wiegand, R.P., Liles, W.C., De Jong, K.A.: Analyzing cooperative coevolution with evolutionary game theory. In: Congress on Evolutionary Computation (CEC), vol. 2, pp. 1600–1605. IEEE Press (2002)

    Google Scholar 

  22. Yong, C.H., Miikkulainen, R.: Coevolution of role-based cooperation in multiagent systems. IEEE Trans. Auton. Ment. Dev. 1(3), 170–186 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by centre grant (to BioISI, Centre Reference: UID/MULTI/04046/2013), from FCT/MCTES/PIDDAC, Portugal, and by grants SFRH/BD/89095/2012 and UID/EEA/50008/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gomes, J., Duarte, M., Mariano, P., Christensen, A.L. (2016). Cooperative Coevolution of Control for a Real Multirobot System. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics