Skip to main content

Direction Estimation in a General Regression Model with Discrete Predictors

  • Conference paper
  • First Online:
New Developments in Statistical Modeling, Inference and Application

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 746 Accesses

Abstract

Consider a general regression model, where the response Y depends on discrete predictors X only through the index \( \boldsymbol{\beta }^{T}\mathbf{X} \). It is well-known that the ordinary least squares (OLS) estimator can recover the underlying direction \( \boldsymbol{\beta } \) exactly if the link function between Y and X is linear. Li and Duan (Ann Stat 17:1009–1052, 1989) showed that the OLS estimator can recover \( \boldsymbol{\beta } \) proportionally if the predictors satisfy the linear conditional mean (LCM) condition. For discrete predictors, we demonstrate that the LCM condition generally does not hold. To improve the OLS estimator in the presence of discrete predictors, we model the conditional mean \( \mathrm{E}(\mathbf{X}\mid \boldsymbol{\beta }^{T}\mathbf{X}) \) as a polynomial function of \( \boldsymbol{\beta }^{T}\mathbf{X} \) and use the central solution space (CSS) estimator. The superior performances of the CSS estimators are confirmed through numerical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Carroll, R. J., Fan, J., Gijbels, I., & Wand, M. P. (1997). Generalized partially linear single-index models. Journal of the American Statistical Association, 92, 477–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, R. D. (1998). Regression graphics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Cook, R. D., & Li, L. (2009). Dimension reduction in regressions with exponential family predictors. Journal of Computational and Graphical Statistics, 18, 774–791.

    Article  MathSciNet  Google Scholar 

  • Cook, R. D., & Nachtsheim, C. (1994). Reweighting to achieve elliptically contoured covariates in regression. Journal of the American Statistical Association, 89, 592–599.

    Article  MATH  Google Scholar 

  • Cui, X., Härdle, W., & Zhu, L. X. (2011). The EFM approach for single-index models. The Annals of Statistics, 39, 1658–1688.

    Article  MathSciNet  MATH  Google Scholar 

  • Dong, Y., & Li, B. (2010). Dimension reduction for non-elliptically distributed predictors: Second order methods. Biometrika, 97, 279–294.

    Article  MathSciNet  MATH  Google Scholar 

  • Dong, Y., & Yu, Z. (2012). Dimension reduction for the conditional kth moment via central solution space. Journal of Multivariate Analysis, 112, 207–218.

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle, W., Hall, P., & Ichimura, H. (1993). Optimal smoothing in single-index models. The Annals of Statistics, 21, 157–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Horowitz, J. L., & Härdle, W. (1996). Direct semiparametric estimation of single-index models with discrete covariates. Journal of the American Statistical Association, 91, 1632–1640.

    Article  MathSciNet  MATH  Google Scholar 

  • Ichimura, H. (1993). Semiparametric least square (SLS) and weighted SLS estimation of single-index models. Journal of Econometrics, 58, 71–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., & Dong, Y. (2009). Dimension reduction for non-elliptically distributed predictors. The Annals of Statistics, 37, 1272–1298.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K. C., & Duan, N. (1989). Regression analysis under link violation. The Annals of Statistics, 17, 1009–1052.

    Article  MathSciNet  MATH  Google Scholar 

  • Powell, J. L., Stock, J. M., & Stoker, T. M. (1989). Semiparametric estimation of index coefficients. Econometrica, 57, 1403–1430.

    Article  MathSciNet  MATH  Google Scholar 

  • Sheng, W., & Yin, X. (2013). Direction estimation in single-index models via distance covariance. Journal of Multivariate Analysis, 122, 148–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, N., & Yin, X. (2015). Direction estimation in single-index regressions via Hilbert-Schmidt independence criterion. Statistica Sinica, 25, 743–758.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexiao Dong .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of \( \boldsymbol{\beta }_{\text{OLS}} \propto \boldsymbol{\beta } \) in Example 3, case iii.

For (X 1, X 2, W)T  ∼ Multinomial (n, (p 1, p 2,  p 3)), it is well-known that X i  ∼ Binomial(n, p i ) for i = 1, 2, and cov(X 1, X 2) = −np 1 p 2. It follows that E(X 1 X 2) = n(n − 1)p 1 p 2. It can be shown that

$$ \displaystyle{\mathrm{E}(X_{1}^{3}) = np_{ 1} + 3n(n - 1)p_{1}^{2} + n(n - 1)(n - 2)p_{ 1}^{3}.} $$

Next we denote k 3 = nk 1k 2 and calculate E(X 1 2 X 2) as follows

$$ \displaystyle\begin{array}{rcl} \mathrm{E}(X_{1}^{2}X_{ 2})& =& \sum _{k_{1},k_{2}}k_{1}^{2}k_{ 2} \frac{n!} {k_{1}!k_{2}!k_{3}!}p_{1}^{k_{1} }p_{2}^{k_{2} }p_{3}^{k_{3} } {}\\ & =& n(n - 1)p_{1}p_{2}\sum _{k_{1},k_{2}}(k_{1} - 1 + 1) \frac{(n - 2)!} {(k_{1} - 1)!(k_{2} - 1)!k_{3}!}p_{1}^{k_{1}-1}p_{ 2}^{k_{2}-1}p_{ 3}^{k_{3} } {}\\ & =& n(n - 1)(n - 2)p_{1}^{2}p_{ 2}\sum _{k_{1},k_{2}} \frac{(n - 3)!} {(k_{1} - 2)!(k_{2} - 1)!k_{3}!}p_{1}^{k_{1}-2}p_{ 2}^{k_{2}-1}p_{ 3}^{k_{3} } {}\\ & & \quad + n(n - 1)p_{1}p_{2}\sum _{k_{1},k_{2}} \frac{(n - 2)!} {(k_{1} - 1)!(k_{2} - 1)!k_{3}!}p_{1}^{k_{1}-1}p_{ 2}^{k_{2}-1}p_{ 3}^{k_{3} } {}\\ & =& n(n - 1)p_{1}p_{2}(1 + np_{1} - 2p_{1}). {}\\ \end{array} $$

For Y = (X 1 + X 2)2, we thus have

$$ \displaystyle\begin{array}{rcl} & & \mathrm{E}\{(X_{1} -\mathrm{ E}(X_{1}))Y \} =\mathrm{ E}(X_{1}^{3}) -\mathrm{ E}(X_{ 1})\mathrm{E}(X_{1}^{2}) +\mathrm{ E}(X_{ 1}X_{2}^{2}) +\mathrm{ E}(X_{ 1}X_{2}^{2}) {}\\ & & -\mathrm{E}(X_{1})\mathrm{E}(X_{2}^{2}) + 2\mathrm{E}(X_{ 1}^{2}X_{ 2}) - 2\mathrm{E}(X_{1})\mathrm{E}(X_{1}X_{2}) {}\\ & & = np_{1}\{1 + (2n - 3)p_{1} - (2n - 2)p_{1}^{2} + p_{ 2}(2n - 3 - (2n - 2)p_{2} - (4n - 4)p_{1})\}.{}\\ \end{array} $$

Similarly, E{(X 2 − E(X 2))Y } is equal to

$$ \displaystyle\begin{array}{rcl} np_{2}\{1 + (2n - 3)p_{2} - (2n - 2)p_{2}^{2} + p_{ 1}(2n - 3 - (2n - 2)p_{1} - (4n - 4)p_{2})\}.& & {}\\ \end{array} $$

Recall that X = (X 1, X 2)T and \( \mathrm{var}(\mathbf{X}) = \boldsymbol{\varSigma } \). Let \( \vert \boldsymbol{\varSigma }\vert \) be the determinant of \( \boldsymbol{\varSigma } \). Since the first row of \( \boldsymbol{\varSigma }^{-1} \) is \( \vert \boldsymbol{\varSigma }\vert ^{-1}\{np_{2}(1 - p_{2}),np_{1}p_{2}\} \), the first component of \( \boldsymbol{\beta }_{\text{OLS}} \) becomes

$$ \displaystyle\begin{array}{rcl} \begin{array}{rlrlrl}& \vert \boldsymbol{\varSigma }\vert ^{-1}[np_{ 2}(1 - p_{2})\mathrm{E}\{(X_{1} -\mathrm{ E}(X_{1}))Y \} + np_{1}p_{2}\mathrm{E}\{(X_{2} -\mathrm{ E}(X_{2}))Y \}]& & \cr & = \vert \boldsymbol{\varSigma }\vert ^{-1}n^{2}p_{ 1}p_{2}\{1 + (2n - 3)(p_{1} + p_{2}) - (2n - 2)(p_{1}^{2} + p_{ 2}^{2})\}.& \cr \end{array}& & {}\\ \end{array} $$

Due to the symmetry between p 1 and p 2 in the expression above, the second component of \( \boldsymbol{\beta }_{ \text{OLS}} \) is exactly the same as the first component. Thus we have \( \boldsymbol{\beta }_{ \text{OLS}} \propto (1,1)^{T} = \boldsymbol{\beta } \). □ 

Proof of Proposition 1.

Assume \( \mathrm{E}\{\mathrm{E}(\mathbf{X}\mid \boldsymbol{\eta }^{T}\mathbf{X})Y \} =\mathrm{ E}\{\mathrm{E}(\mathbf{X}\mid \boldsymbol{\beta }^{T}\mathbf{X})Y \} \) with probability 1 for some \( \boldsymbol{\eta } \), such that \( \boldsymbol{\eta } \) is not proportional to \( \boldsymbol{\beta } \). Then both \( \boldsymbol{\eta } \) and \( \boldsymbol{\beta } \) will satisfy Eq. (6), which means the solution of (6) is not unique up to a scalar multiplication. Thus under the assumption that \( \mathrm{Pr}(\mathrm{E}\{\mathrm{E}(\mathbf{X}\mid \boldsymbol{\eta }^{T}\mathbf{X})Y \}\neq \mathrm{E}\{\mathrm{E}(\mathbf{X}\mid \boldsymbol{\beta }^{T}\mathbf{X})Y \}) > 0 \) whenever \( \boldsymbol{\eta } \) is not proportional to \( \boldsymbol{\beta } \), the solution of (6) is unique. Because \( \boldsymbol{\beta } \) satisfies (6) and the solution of (6) is unique up to a scalar multiplication, we have \( \boldsymbol{\beta }_{\text{CSS}} \propto \boldsymbol{\beta } \). Under the additional LCM condition (2), \( \boldsymbol{\beta }_{\text{OLS}} \) is also proportional to \( \boldsymbol{\beta } \). Consequently we have \( \boldsymbol{\beta }_{\text{CSS}} \propto \boldsymbol{\beta }_{\text{OLS}} \). □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dong, Y., Yu, Z. (2016). Direction Estimation in a General Regression Model with Discrete Predictors. In: Jin, Z., Liu, M., Luo, X. (eds) New Developments in Statistical Modeling, Inference and Application. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-42571-9_4

Download citation

Publish with us

Policies and ethics