Skip to main content

Effective Invariant Theory of Permutation Groups Using Representation Theory

  • Conference paper
  • First Online:
Algebraic Informatics (CAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9270))

Included in the following conference series:

Abstract

Using the representation theory of the symmetric group, we propose an algorithm to compute the invariant ring of a permutation group in the non modular case. Our approach has the advantage of reducing the amount of linear algebra computations and exploits a finer combinatorial description of the invariant ring. We build explicit generators for invariant rings by means of the higher Specht polynomials of the symmetric group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdeljaouad, I.: Théorie des Invariants et Applications à la Théorie de Galois effective. Ph.D. thesis, Université Paris 6 (2000)

    Google Scholar 

  2. Bergeron, F.: Algebraic combinatorics and coinvariant spaces. CMS Treatises in Mathematics (2009)

    Google Scholar 

  3. Borie, N.: Calcul des invariants des groupes de permutations par transformée de Fourier. Ph.D. thesis, Laboratoire de Mathématiques, Université Paris Sud (2011)

    Google Scholar 

  4. Colin, A.: Solving a system of algebraic equations with symmetries. J. Pure Appl. Algebra 117/118, 195–215 (1997). algorithms for algebra (Eindhoven, 1996)

    Article  MathSciNet  Google Scholar 

  5. Colin, A.: Théorie des invariants effective; Applications à la théorie de Galois et à la résolution de systèmes algébriques; Implantation en AXIOM. Ph.D. thesis, École polytechnique (1997)

    Google Scholar 

  6. Sage-Combinat community, T.: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008)

    Google Scholar 

  7. Derksen, H., Kemper, G.: Computational invariant theory. Springer-Verlag, Berlin (2002)

    Book  MATH  Google Scholar 

  8. Faugère, J., Rahmany, S.: Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases. In: Proceedings of the 2009 international symposium on Symbolic and algebraic computation, pp. 151–158 (2009)

    Google Scholar 

  9. The GAP Group: Lehrstuhl D für Mathematik, RWTH Aachen, Germany and SMCS, U. St. Andrews, Scotland: GAP - Groups, Algorithms, and Programming (1997)

    Google Scholar 

  10. Garsia, A., Stanton, D.: Group actions on stanley-reisner rings and invariants of permutation groups. Advances in Mathematics 51(2), 107–201 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gatermann, K.: Symbolic solution of polynomial equation systems with symmetry. Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1990)

    Google Scholar 

  12. Geissler, K., Klüners, J.: Galois group computation for rational polynomials. J. Symbolic Comput. 30(6), 653–674 (2000). algorithmic methods in Galois theory

    Article  MATH  MathSciNet  Google Scholar 

  13. Kemper, G.: The invar package for calculating rings of invariants. IWR Preprint 93–94, University of Heidelberg (1993)

    Google Scholar 

  14. King, S.: Fast Computation of Secondary Invariants (2007). Arxiv preprint math/0701270

  15. Lascoux, A., Schützenberger, M.P.: Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294(13), 447–450 (1982)

    MATH  Google Scholar 

  16. Pouzet, M., Thiéry, N.M.: Invariants algébriques de graphes et reconstruction. C. R. Acad. Sci. Paris Sér. I Math. 333(9), 821–826 (2001)

    Article  MATH  Google Scholar 

  17. Stanley, R.P.: Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. (N.S.) 1(3), 475–511 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stein, W., et al.: Sage Mathematics Software (Version 3.3). The Sage Development Team (2009). http://www.sagemath.org

  19. Sturmfels, B.: Algorithms in invariant theory. Springer-Verlag, Vienna (1993)

    Book  MATH  Google Scholar 

  20. Terasoma, T., Yamada, H.: Higher Specht polynomials for the symmetric group. Proc. Japan Acad. Ser. A Math. Sci. 69(2), 41–44 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Thiéry, N.M.: Computing minimal generating sets of invariant rings of permutation groups with SAGBI-Gröbner basis. In: Discrete models (Paris, 2001), pp. 315–328 (electronic) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Borie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Borie, N. (2015). Effective Invariant Theory of Permutation Groups Using Representation Theory. In: Maletti, A. (eds) Algebraic Informatics. CAI 2015. Lecture Notes in Computer Science(), vol 9270. Springer, Cham. https://doi.org/10.1007/978-3-319-23021-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23021-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23020-7

  • Online ISBN: 978-3-319-23021-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics