Skip to main content

FCAvizIR: Exploring Relational Data Set’s Implications Using Metrics and Topics

  • Conference paper
  • First Online:
Conceptual Knowledge Structures (CONCEPTS 2024)

Abstract

Implication is a core notion of Formal Concept Analysis and its extensions. It provides information about the regularities present in the data. When one considers a relational data set of real-size, implications are numerous and their formulation, which combines primitive and relational attributes computed using Relational Concept Analysis framework, is complex. For an expert wishing to answer a question based on such a corpus of implications, having a smart exploration strategy is crucial. In this paper, we propose a visual approach, implemented in a web platform named FCAvizIR, for leveraging such corpus. Comprised of three interactive and coordinated views and a toolbox, FCAvizIR has been designed to explore corpora of implication rules following Schneiderman’s famous mantra “overview first, zoom and filter, then details on demand”. It enables metrics filtering, e.g. fixing a minimum and a maximum support value, and the multiple selection of relations and attributes in the premise and in the conclusion to identify the corresponding subset of implications presented as a list and Euler diagrams. An example of exploration is presented using an excerpt of Knomana to analyze plant-based extracts for controlling pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 74.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.knomana.org (accessed: 2024–06).

  2. 2.

    https://fcavizir.lirmm.fr (accessed: 2024–04).

  3. 3.

    https://d3js.org/ (accessed: 2024–03).

  4. 4.

    https://atomiks.github.io/tippyjs/ (accessed: 2024–03).

  5. 5.

    https://gite.lirmm.fr/formal-concept-analysis/fcavizir (accessed: 2024-03).

  6. 6.

    https://www.lirmm.fr/fca4j/ (accessed: 2024-04).

References

  1. Alam, M., Le, T.N.N., Napoli, A.: Steps towards interactive formal concept analysis with latviz. In: Proceedings of the 5th International Workshop. “What can FCA do for Artificial Intelligence”? co-loc. with the Europ. Conference on Artificial Intelligence ECAI (2016)

    Google Scholar 

  2. Baixeries, J., Codocedo, V., Kaytoue, M., Napoli, A.: Computing dependencies using FCA. In: Missaoui, R., Kwuida, L., Abdessalem, T. (eds.) Complex Data Analytics with Formal Concept Analysis, pp. 135–150. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-93278-7_6

    Chapter  Google Scholar 

  3. Baldonado, M.Q.W., Woodruff, A., Kuchinsky, A.: Guidelines for using multiple views in information visualization. In: Proceedings of the working Conference on Advanced Visual Interfaces (AVI), pp. 110–119. ACM Press (2000)

    Google Scholar 

  4. Bayardo Jr, R.J., Agrawal, R.: Mining the most interesting rules. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 145–154 (1999)

    Google Scholar 

  5. Bazin, A.: On implication bases in n-lattices. Discret. Appl. Math. 273, 21–29 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit implicational basis. Theor. Comput. Sci. 411(22–24), 2155–2166 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bostock, M., Ogievetsky, V., Heer, J.: \(D^{3}\) data-driven documents. IEEE Trans. Visual Comput. Graph. 17(12), 2301–2309 (2011)

    Article  Google Scholar 

  8. Cordero, P., Enciso, M., Mora, Á., González, P.G.: An approach to visualize implications. In: ICFCA (Supplements), pp. 113–124 (2019)

    Google Scholar 

  9. Cordero, P., Enciso, M., Mora, Á., Ojeda-Aciego, M.: Computing left-minimal direct basis of implications. In: Proceedings of the 10th International Conference on Concept Lattices and Their Applications. CEUR Workshop. Proceedings, vol. 1062, pp. 293–298 (2013)

    Google Scholar 

  10. Ertek, G., Demiriz, A.: A framework for visualizing association mining results. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 593–602. Springer, Heidelberg (2006). https://doi.org/10.1007/11902140_63

    Chapter  Google Scholar 

  11. FerrÃ, S.: Reconciling Expressivity and Usability in Information Access - From Filesystems to the Semantic Web. Habilitation thesis, Matisse, Univ. Rennes 1 (2014). habilitation à Diriger des Recherches (HDR), defended on November 6th

    Google Scholar 

  12. Fister, I.: Information cartography in association rule mining. IEEE Trans. Emerg. Top. Comput. intell. 6(3), 660–676 (2021)

    Article  Google Scholar 

  13. Fister, I., et al.: Visualization of numerical association rules by hill slopes. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds.) IDEAL 2020. LNCS, vol. 12489, pp. 101–111. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62362-3_10

    Chapter  Google Scholar 

  14. Fister, I., Fister, I.: Association rules over time. Frontiers in nature-inspired industrial optimization, pp. 1–16 (2022)

    Google Scholar 

  15. Fister Jr, I., Fister, I., Fister, D., Podgorelec, V., Salcedo-Sanz, S.: A comprehensive review of visualization methods for association rule mining: Taxonomy, challenges, open problems and future ideas. Exp. Syst. with App, p. 120901 (2023)

    Google Scholar 

  16. Ganter, B., Wille, R.: Formal Concept Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  Google Scholar 

  17. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et sciences humaines 95, 5–18 (1986)

    Google Scholar 

  18. Hahsler, M.: Arulesviz: interactive visualization of association rules with R. R J. 9(2), 163 (2017)

    Article  Google Scholar 

  19. Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017)

    Google Scholar 

  20. Hartigan, J.A., Kleiner, B.: A mosaic of television ratings. Am. Stat. 38(1), 32–35 (1984)

    Article  Google Scholar 

  21. Hofmann, H.: Exploring categorical data: interactive mosaic plots. Metrika 51, 11–26 (2000)

    Article  Google Scholar 

  22. Hrovat, G., Fister, I., Jr., Yermak, K., Stiglic, G., Fister, I.: Interestingness measure for mining sequential patterns in sports. J. Intell. Fuzzy Syst. 29(5), 1981–1994 (2015)

    Article  Google Scholar 

  23. Mahrach, L., et al.: Combining implications and conceptual analysis to learn from a pesticidal plant knowledge base. In: Braun, T., Gehrke, M., Hanika, T., Hernandez, N. (eds.) Graph-Based Representation and Reasoning: 26th International Conference on Conceptual Structures, ICCS 2021, Virtual Event, September 20–22, 2021, Proceedings, pp. 57–72. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-86982-3_5

    Chapter  Google Scholar 

  24. Munzner, T.: A nested process model for visualization design and validation. IEEE Trans. Visual Comput. Graphics 15(6), 921–928 (2009)

    Article  Google Scholar 

  25. Neves, J.C.V., et al.: Exploring different paradigms to extract proper implications from high dimensional formal contexts. IEEE Access 8, 134161–134175 (2020)

    Article  Google Scholar 

  26. Ong, K.H., Ong, K.L., Ng, W.K., Lim, E.P.: Crystalclear: active visualization of association rules. In: International Workshop on Active Mining (AM-2002). Citeseer (2002)

    Google Scholar 

  27. Roberts, J.C.: State of the art: Coordinated & multiple views in exploratory visualization. In: Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV), pp. 61–71 (2007)

    Google Scholar 

  28. Rouane-Hacène, M.R., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)

    Article  MathSciNet  Google Scholar 

  29. Said, Z.B., Guillet, F., Richard, P., Picarougne, F., Blanchard, J.: Visualisation of association rules based on a molecular representation. In: 2013 17th International Conference on information visualisation, pp. 577–581. IEEE (2013)

    Google Scholar 

  30. Sedlmair, M., Meyer, M.D., Munzner, T.: Design study methodology: Reflections from the trenches and the stacks. IEEE Trans. Visual Comput. Graphics 18(12), 2431–2440 (2012)

    Article  Google Scholar 

  31. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proc. IEEE Symp. on Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  32. Silvie, P., Martin, P., Huchard, M., Keip, P., Gutierrez, A., Sarter, S.: Prototyping a knowledge-based system to identify botanical extracts for plant health in sub-saharan africa. Plants 10, 896 (04 2021)

    Google Scholar 

  33. Tsurinov, P., Shpynov, O., Lukashina, N., Likholetova, D., Artyomov, M.: Farm: hierarchical association rule mining and visualization method. In: Proceedings of 12th ACM Conference on bioinformatics, Comput. Biology, and Health Informatics, pp. 1 (2021)

    Google Scholar 

  34. Unwin, A., Hofmann, H., Bernt, K.: The TwoKey plot for multiple association rules control. In: De Raedt, L., Siebes, A. (eds.) Principles of Data Mining and Knowledge Discovery, pp. 472–483. Springer Berlin Heidelberg, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_39

    Chapter  Google Scholar 

  35. Wajnberg, M.: Analyse relationnelle de concepts : une méthode polyvalente pour l’extraction de connaissance. Thèse de doctorat, Université du Québec à Montréal, Université de Lorraine (Nov 2020). https://hal.science/tel-03042085

Download references

Acknowledgments

The authors warmly thank Alain Gutierrez for his strong support during this work and for enabling FCA4J to generate output files with the data format as required by FCAvizIR. This work was supported by the French National Research Agency under the Investments for the Future Program, referred as ANR-16-CONV-0004 (#Digitag) and the ANR SmartFCA project, Grant ANR-21-CE23-0023 of the French National Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Huchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musslin, L. et al. (2024). FCAvizIR: Exploring Relational Data Set’s Implications Using Metrics and Topics. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67868-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67867-7

  • Online ISBN: 978-3-031-67868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics