Skip to main content

Fitch Graph Completion

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2023)

Abstract

Horizontal gene transfer is an important contributor to evolution. According to Walter M. Fitch, two genes are xenologs if they are separated by at least one HGT. More formally, the directed Fitch graph has a set of genes as its vertices, and directed edges (xy) for all pairs of genes x and y for which y has been horizontally transferred at least once since it diverged from the last common ancestor of x and y. Subgraphs of Fitch graphs can be inferred by comparative sequence analysis. In many cases, however, only partial knowledge about the “full” Fitch graph can be obtained. Here, we characterize Fitch-satisfiable graphs that can be extended to a biologically feasible “full” Fitch graph and derive a simple polynomial-time recognition algorithm. We then proceed to showing that finding the Fitch graphs with total maximum (confidence) edge-weights is an NP-hard problem.

This work was supported in part by the German Research Foundation (DFG, STA 850/49-1) and the Data-driven Life Science (DDLS) program funded by the Knut and Alice Wallenberg Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 59.99
Price excludes VAT (USA)
Softcover Book
USD 79.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Böcker, S., Dress, A.W.M.: Recovering symbolically dated, rooted trees from symbolic ultrametrics. Adv. Math. 138, 105–125 (1998). https://doi.org/10.1006/aima.1998.1743

    Article  MathSciNet  MATH  Google Scholar 

  2. Corneil, D.G., Lerchs, H., Steward Burlingham, L.: Complement Reducible Graphs. Discr. Appl. Math. 3, 163–174 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14, 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for directed cographs. Discr. Appl. Math. 154, 1722–1741 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engelfriet, J., Harju, T., Proskurowski, A., Rozenberg, G.: Characterization and complexity of uniformly nonprimitive labeled 2-structures. Theor. Comp. Sci. 154, 247–282 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geiß, M., Anders, J., Stadler, P.F., Wieseke, N., Hellmuth, M.: Reconstructing gene trees from fitch’s xenology relation. J. Math. Biol. 77, 1459–1491 (2018). https://doi.org/10.1007/s00285-018-1260-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Gurski, F.: Dynamic programming algorithms on directed cographs. Stat. Optim. Inf. Comput. 5(1), 35–44 (2017). https://doi.org/10.19139/soic.v5i1.260

    Article  MathSciNet  Google Scholar 

  8. Hellmuth, M., Scholz, G.E.: Resolving prime modules: the structure of pseudo-cographs and galled-tree explainable graphs (2023). http://arxiv.org/abs/10.48550/arXiv.2211.16854

  9. Hellmuth, M., Seemann, C.R.: Alternative characterizations of Fitch’s xenology relation. J. Math. Biol. 79(3), 969–986 (2019). https://doi.org/10.1007/s00285-019-01384-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Hellmuth, M., Stadler, P.F., Puthiyaveedu, S.T.: Fitch graph completion (2023). https://doi.org/10.48550/arXiv.2306.06878

  11. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5, 558–562 (1962). https://doi.org/10.1145/368996.369025

    Article  MATH  Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, pp. 85–103. Springer, US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  13. McConnell, R.M., De Montgolfier, F.: Linear-time modular decomposition of directed graphs. Discr. Appl. Math. 145(2), 198–209 (2005). https://doi.org/10.1016/j.dam.2004.02.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Nøjgaard, N., El-Mabrouk, N., Merkle, D., Wieseke, N., Hellmuth, M.: Partial homology relations - satisfiability in terms of di-cographs. In: Wang, L., Zhu, D. (eds.) Computing and Combinatorics. Lecture Notes Comp. Sci., vol. 10976, pp. 403–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_34

  15. Ravenhall, M., Škunca, N., Lassalle, F., Dessimoz, C.: Inferring horizontal gene transfer. PLoS Comp. Biol. 11, e1004095 (2015). https://doi.org/10.1371/journal.pcbi.1004095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Thekkumpadan Puthiyaveedu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hellmuth, M., Stadler, P.F., Thekkumpadan Puthiyaveedu, S. (2024). Fitch Graph Completion. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14423. Springer, Cham. https://doi.org/10.1007/978-3-031-49193-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49193-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49192-4

  • Online ISBN: 978-3-031-49193-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics