Skip to main content

Automatic Clustering for Seasonal Time Series Based on Entropy

  • Conference paper
  • First Online:
Theory and Applications of Time Series Analysis (ITISE 2022)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

  • 304 Accesses

Abstract

Automatic clustering for seasonal time series based on entropy is a tool developed to understand decision-making behaviours for economic agents. An unsupervised learning system reduces information and is a powerful statistical learning tool. This method is a multiple-choice classification solution under uncertain environments. The empirical application is in the tourist accommodation market, where international tourists must choose various accommodation options (hotels, tourist apartments, campsites and rural apartments). Seasonal uncertainty for offers can solve information gaps in understanding human behaviour. The three-dimensional information of spatial extension, spatial location and temporal extension is offered for the Spanish tourist market of foreigners who visit the Spanish Autonomous Communities from January 2001 to June 2022. The results have revealed similarities and dissimilarities among the analysed Spanish regions depending on the seasonal period. In addition, the internal verification criteria have allowed us to quantify similarities in intragroup behaviour as an added value to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering, Data Mining and Knowledge Discovery Handbook, pp. 855–874 (2009). https://doi.org/10.1007/978-0-387-09823-4_44.

  2. Ruiz Reina, M.Á.: Multichoice Entropy Clustering for Time Series and Seasonality. In: International Conference on Time Series and Forecasting (2022)

    Google Scholar 

  3. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical J. pp. 379–423, (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

  4. Ruiz-Reina, M.Á.: Spatio-temporal clustering: Neighbourhoods based on median seasonal entropy. Spat Stat 45, 100535 (2021). https://doi.org/10.1016/J.SPASTA.2021.100535

    Article  MathSciNet  Google Scholar 

  5. UNWTO, “UNWTO World Tourism Barometer and Statistical Annex, March 2021,” UNWTO World Tourism Barometer, 19(2), 1–32 (2021). https://doi.org/10.18111/WTOBAROMETERENG.2021.19.1.2.

  6. INE, INEbase / Servicios /Hostelería y turismo /Cuenta satélite del turismo de España / Últimos datos (2022). https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=estadistica_C&cid=1254736169169&menu=ultiDatos&idp=1254735576863. Accessed Aug. 31, 2022

  7. Qin, C., Song, S., Huang, G., Zhu, L.: Unsupervised neighborhood component analysis for clustering. Neurocomputing 168, 609–617 (2015). https://doi.org/10.1016/J.NEUCOM.2015.05.064

    Article  Google Scholar 

  8. Chen, B., Yin, H.: Learning category distance metric for data clustering. Neurocomputing 306, 160–170 (2018). https://doi.org/10.1016/J.NEUCOM.2018.03.048

    Article  Google Scholar 

  9. Cox, M., Ellsworth, D.: Managing big data for scientific visualisation. ACM Siggraph 97 (1997)

    Google Scholar 

  10. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering – A decade review. Inf Syst, vol. 53, pp. 16–38 (2015). https://doi.org/10.1016/J.IS.2015.04.007.

  11. Scotto, M.G., Alonso, A.M., Barbosa, S.M.: Clustering time series of sea levels: Extreme value approach. J Waterw Port Coast Ocean Eng 136, 215–225 (2010). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000045

    Article  Google Scholar 

  12. Maharaj, E.A., Alonso, A.M., D’Urso, P.: Clustering seasonal time series using extreme value analysis: An application to Spanish temperature time series. Commun Stat Case Stud Data Anal Appl 1, 175–191 (2015). https://doi.org/10.1080/23737484.2016.1179140

    Article  Google Scholar 

  13. Alonso, A.M., Berrendero, J.R., Hernández, A., Justel, A.: Time series clustering based on forecast densities. Comput Stat Data Anal 51, 762–766 (2006). https://doi.org/10.1016/j.csda.2006.04.035

    Article  MathSciNet  MATH  Google Scholar 

  14. Stuetzle, W.: Estimating the cluster tree of a density by analysing the minimal spanning tree of a sample. J. Classif. 20(1), 25–47 (2003). https://doi.org/10.1007/s00357-003-0004-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Leibovici, D.G., et al.: Spatio-temporal variations and uncertainty in land surface modelling for high latitudes: univariate response analysis. Biogeosciences 17(7), 1821–1844 (2020). https://doi.org/10.5194/BG-17-1821-2020

    Article  Google Scholar 

  16. Leibovici, D.G., Claramunt, C.: On Integrating Size and Shape Distributions into a Spatio-Temporal Information Entropy Framework Entropy Vol. 21, Page 1112, vol. 21, no. 11, p. 1112 (2019). https://doi.org/10.3390/E21111112

  17. Peters, G.W., Nevat, I., Nagarajan, S.G., Matsui, T.: Spatial Warped Gaussian Processes: Estimation and Efficient Field Reconstruction. Entropy 2021, Vol. 23, Page 1323, vol. 23, no. 10, p. 1323 (2021). https://doi.org/10.3390/E23101323

  18. Zhou, S., et al.: Travel Characteristics Analysis and Traffic Prediction Modeling Based on Online Car-Hailing Operational Data Sets. Entropy 2021, Vol. 23, Page 1305, vol. 23, no. 10, p. 1305 (2021). https://doi.org/10.3390/E23101305

  19. Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin, F.: Spatiotemporal clustering: a review. Artif Intell Rev, vol. 53, no. 4, pp. 2381–2423 (2020). https://doi.org/10.1007/S10462-019-09736-1

  20. Vázquez, I., Villar, J.R., Sedano, J., Simić, S., de la Cal, E.: An ensemble solution for multivariate time series clustering. Neurocomputing 457, 182–192 (2021). https://doi.org/10.1016/J.NEUCOM.2020.09.093

    Article  Google Scholar 

  21. Wang, W., Zhang, Y.: On fuzzy cluster validity indices. Fuzzy Sets Syst 158(19), 2095–2117 (2007). https://doi.org/10.1016/J.FSS.2007.03.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit 46(1), 243–256 (2013). https://doi.org/10.1016/J.PATCOG.2012.07.021

    Article  Google Scholar 

  23. Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math Geosci 42, 487–517 (2010). https://doi.org/10.1007/s11004-010-9276-7

    Article  MATH  Google Scholar 

  24. Manco, G., Baglioni, M., Giannotti, F., Kuijpers, B., Raffaetà,A., Renso, C.: Querying and Reasoning for Spatiotemporal Data Mining. Mobility, Data Mining and Privacy: Geographic Knowledge Discovery, pp. 335–374 (2008). https://doi.org/10.1007/978-3-540-75177-9_13.

  25. Jakimowicz,A.: The Role of Entropy in the Development of Economics. Entropy 22(4), 452,(2020). https://doi.org/10.3390/E22040452

  26. Kliegr, T., Bahník, Š, Fürnkranz, J.: A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artif Intell 295, 103458 (2021). https://doi.org/10.1016/J.ARTINT.2021.103458

    Article  MathSciNet  Google Scholar 

  27. Yong-Jin, A.L.J., Jang, S., Jinwon, K.: Impacts of Peer-to-Peer Accommodation Use on Travel Patterns. Annals of Tourism Researchals of 83, 102960 (2020). https://doi.org/10.1016/j.annals.2020.102960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Ruiz Reina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reina, M.Á.R. (2023). Automatic Clustering for Seasonal Time Series Based on Entropy. In: Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I. (eds) Theory and Applications of Time Series Analysis. ITISE 2022. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-40209-8_7

Download citation

Publish with us

Policies and ethics