Skip to main content

Multi-attribute Open Set Recognition

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Abstract

Open Set Recognition (OSR) extends image classification to an open-world setting, by simultaneously classifying known classes and identifying unknown ones. While conventional OSR approaches can detect Out-of-Distribution (OOD) samples, they cannot provide explanations indicating which underlying visual attribute(s) (e.g., shape, color or background) cause a specific sample to be unknown. In this work, we introduce a novel problem setup that generalizes conventional OSR to a multi-attribute setting, where multiple visual attributes are simultaneously recognized. Here, OOD samples can be not only identified but also categorized by their unknown attribute(s). We propose simple extensions of common OSR baselines to handle this novel scenario. We show that these baselines are vulnerable to shortcuts when spurious correlations exist in the training dataset. This leads to poor OOD performance which, according to our experiments, is mainly due to unintended cross-attribute correlations of the predicted confidence scores. We provide an empirical evidence showing that this behavior is consistent across different baselines on both synthetic and real world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, F., Bengio, Y., van Seijen, H., Courville, A.: Systematic generalisation with group invariant predictions. In: International Conference on Learning Representations (2020)

    Google Scholar 

  2. Atzmon, Y., Kreuk, F., Shalit, U., Chechik, G.: A causal view of compositional zero-shot recognition. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1462–1473. Curran Associates, Inc. (2020)

    Google Scholar 

  3. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)

    Google Scholar 

  4. Chen, G., Peng, P., Wang, X., Tian, Y.: Adversarial reciprocal points learning for open set recognition. arXiv preprint arXiv:2103.00953 (2021)

  5. Chen, G., et al.: Learning open set network with discriminative reciprocal points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 507–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_30

    Chapter  Google Scholar 

  6. Du, S., Hong, C., Chen, Y., Cao, Z., Zhang, Z.: Class-attribute inconsistency learning for novelty detection. Pattern Recogn. 126, 108582 (2022)

    Article  Google Scholar 

  7. Eulig, E., et al.: Diagvib-6: a diagnostic benchmark suite for vision models in the presence of shortcut and generalization opportunities. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10655–10664 (2021)

    Google Scholar 

  8. Ge, Z., Demyanov, S., Chen, Z., Garnavi, R.: Generative openmax for multi-class open set classification. arXiv preprint arXiv:1707.07418 (2017)

  9. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)

    Article  Google Scholar 

  10. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: ICLR (2018)

    Google Scholar 

  11. Geng, C., Huang, S.J., Chen, S.: Recent advances in open set recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3614–3631 (2020)

    Google Scholar 

  12. Gillert, A., von Lukas, U.F.: Towards combined open set recognition and out-of-distribution detection for fine-grained classification. In: VISIGRAPP (5: VISAPP), pp. 225–233 (2021)

    Google Scholar 

  13. Guo, Y., Camporese, G., Yang, W., Sperduti, A., Ballan, L.: Conditional variational capsule network for open set recognition. arXiv preprint arXiv:2104.09159 (2021)

  14. Hermann, K., Lampinen, A.: What shapes feature representations? exploring datasets, architectures, and training. In: NeurIPS, vol. 33, pp. 9995–10006. Curran Associates, Inc. (2020)

    Google Scholar 

  15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Mancini, M., Naeem, M.F., Xian, Y., Akata, Z.: Open world compositional zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5222–5230 (2021)

    Google Scholar 

  17. Misra, I., Gupta, A., Hebert, M.: From red wine to red tomato: composition with context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1792–1801 (2017)

    Google Scholar 

  18. Naeem, M.F., Xian, Y., Tombari, F., Akata, Z.: Learning graph embeddings for compositional zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 953–962 (2021)

    Google Scholar 

  19. Nagarajan, T., Grauman, K.: Attributes as operators: factorizing unseen attribute-object compositions. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 169–185 (2018)

    Google Scholar 

  20. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 613–628 (2018)

    Google Scholar 

  21. Oza, P., Patel, V.M.: C2ae: class conditioned auto-encoder for open-set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2307–2316 (2019)

    Google Scholar 

  22. Purushwalkam, S., Nickel, M., Gupta, A., Ranzato, M.: Task-driven modular networks for zero-shot compositional learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3593–3602 (2019)

    Google Scholar 

  23. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013). https://doi.org/10.1109/TPAMI.2012.256

    Article  Google Scholar 

  24. Shu, Y., Shi, Y., Wang, Y., Huang, T., Tian, Y.: P-ODN: prototype-based open deep network for open set recognition. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  25. Sun, X., Yang, Z., Zhang, C., Ling, K.V., Peng, G.: Conditional gaussian distribution learning for open set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13480–13489 (2020)

    Google Scholar 

  26. Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Open-set recognition: a good closed-set classifier is all you need. In: International Conference on Learning Representations (2021)

    Google Scholar 

  27. Yoshihashi, R., Shao, W., Kawakami, R., You, S., Iida, M., Naemura, T.: Classification-reconstruction learning for open-set recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4016–4025 (2019)

    Google Scholar 

  28. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 192–199 (2014)

    Google Scholar 

  29. Yu, A., Grauman, K.: Semantic jitter: dense supervision for visual comparisons via synthetic images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5570–5579 (2017)

    Google Scholar 

  30. Zhang, H., Li, A., Guo, J., Guo, Y.: Hybrid models for open set recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 102–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_7

    Chapter  Google Scholar 

  31. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  32. Zhou, D.W., Ye, H.J., Zhan, D.C.: Learning placeholders for open-set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyapat Saranrittichai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 187 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saranrittichai, P., Mummadi, C.K., Blaiotta, C., Munoz, M., Fischer, V. (2022). Multi-attribute Open Set Recognition. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics