Skip to main content

Robust Sparse Learning Based Sensor Array Optimization for Multi-feature Fusion Classification

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

In this paper, we propose a robust sensor array optimization method based on sparse learning for multi-feature fusion data classification. The proposed approach contains three key characteristics. First, it considers the intrinsic group structure among features by combining an \(\ell _{F,1}\) norm regularizer design and least squares regression framework. Second, in sensor selection, insignificant feature groups can be eliminated by grouped row sparse coefficients generated by the model, while the \(\varepsilon \)-dragging trick is introduced to improve the classification ability. Third, an efficient alternating iteration algorithm is presented to optimize the convex objective function. The results compared with the other classical methods on gas sensor array data sets demonstrate that the proposed method can effectively reduce the number of sensors with higher classification accuracy.

This work is founded by the Natural Science Foundation of China (No. 62171066).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huerta, R., Mosqueiro, T., Fonollosa, J., Rulkov, N.F., Rodriguez-Lujan, I.: Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring. Chemometr. Intell. Lab. Syst. 157, 169–176 (2016)

    Article  Google Scholar 

  2. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Article  Google Scholar 

  3. Liu, B., et al.: Lung cancer detection via breath by electronic nose enhanced with a sparse group feature selection approach. Sens. Actuators B Chem. 339, 129896 (2021)

    Article  Google Scholar 

  4. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint \(\ell \)2, 1-norms minimization. Adv. Neural Information Process. Syst. 23, 1813–1821 (2010)

    Google Scholar 

  5. Röck, F., Barsan, N., Weimar, U.: Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008)

    Article  Google Scholar 

  6. Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M., Huerta, R.: On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemometr. Intell. Lab. Syst. 130, 123–134 (2014)

    Article  Google Scholar 

  7. Saha, P., Ghorai, S., Tudu, B., Bandyopadhyay, R., Bhattacharyya, N.: Optimization of sensor array in electronic nose by combinational feature selection method. In: Mason, A., Mukhopadhyay, S.C., Jayasundera, K.P., Bhattacharyya, N. (eds.) Sensing Technology: Current Status and Future Trends II. SSMI, vol. 8, pp. 189–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02315-1_9

    Chapter  Google Scholar 

  8. Scott, S.M., James, D., Ali, Z.: Data analysis for electronic nose systems. Microchimi. Acta 156(3), 183–207 (2006). https://doi.org/10.1007/s00604-006-0623-9

    Article  Google Scholar 

  9. Sun, H., et al.: Sensor array optimization of electronic nose for detection of bacteria in wound infection. IEEE Trans. Ind. Electron. 64(9), 7350–7358 (2017)

    Article  Google Scholar 

  10. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 166, 320–329 (2012)

    Article  Google Scholar 

  11. Wei, G., Zhao, J., Yu, Z., Feng, Y., Li, G., Sun, X.: An effective gas sensor array optimization method based on random forest. In: 2018 IEEE SENSORS, pp. 1–4. IEEE (2018)

    Google Scholar 

  12. Xiang, S., Nie, F., Meng, G., Pan, C., Zhang, C.: Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans. Neural Netw Learn. Syst. 23(11), 1738–1754 (2012)

    Article  Google Scholar 

  13. Yan, J., et al.: Electronic nose feature extraction methods: A review. Sensors 15(11), 27804–27831 (2015)

    Article  Google Scholar 

  14. Zhou, J., Welling, C.M., Kawadiya, S., Deshusses, M.A., Grego, S., Chakrabarty, K.: Sensor-array optimization based on mutual information for sanitation-related malodor alerts. In: 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2019)

    Google Scholar 

  15. Ziyatdinov, A., Fonollosa, J., Fernandez, L., Gutierrez-Galvez, A., Marco, S., Perera, A.: Bioinspired early detection through gas flow modulation in chemo-sensory systems. Sens. Actuators B Chem. 206, 538–547 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengchun Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, L., Tian, F., Qian, J., Liu, R., Jiang, A. (2022). Robust Sparse Learning Based Sensor Array Optimization for Multi-feature Fusion Classification. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics