Skip to main content

Detection of Event Precursors in Social Networks: A Graphlet-Based Method

  • Conference paper
  • First Online:
Research Challenges in Information Science (RCIS 2021)

Abstract

The increasing availability of data from online social networks attracts researchers’ interest, who seek to build algorithms and machine learning models to analyze users’ interactions and behaviors. Different methods have been developed to detect remarkable precursors preceding events, using text mining and Machine Learning techniques on documents, or using network topology with graph patterns.

Our approach aims at analyzing social networks data, through a graphlets enumeration algorithm, to identify event precursors and to study their contribution to the event. We test the proposed method on two different types of social network data sets: real-world events (Lubrizol fire, EU law discussion), and general events (Facebook and MathOverflow). We also contextualize the results by studying the position (orbit) of important nodes in the graphlets, which are assumed as event precursors. After analysis of the results, we show that some graphlets can be considered precursors of events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 99.00
Price excludes VAT (USA)
Softcover Book
USD 129.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://rdrr.io/github/alan-turing-institute/network-comparison/src/R/orca_inter-face.R.

  2. 2.

    Implemented with the R package tseries: https://www.rdocumentation.org/packages/tseries/versions/0.1-2/topics/ccf.

  3. 3.

    https://snap.stanford.edu/data/#socnets.

  4. 4.

    The difference between the number of tweets in Sect. 4 and the number of nodes and edges is since several tweets can produce the same interaction.

References

  1. Ackley, J.L., Puranik, T.G., Mavris, D.: A supervised learning approach for safety event precursor identification in commercial aviation. In: AIAA Aviation Forum, p. 2880 (2020)

    Google Scholar 

  2. Ansoff, H.I.: Managing strategic surprise by response to weak signals. Calif. Manage. Rev. 18(2), 21–33 (1975)

    Article  Google Scholar 

  3. Baiesi, M.: Scaling and precursor motifs in earthquake networks. Phys. A 360(2), 534–542 (2006)

    Article  Google Scholar 

  4. Brownlee, J.: Introduction to time series forecasting with python: how to prepare data and develop models to predict the future. Machine Learning Mastery (2017)

    Google Scholar 

  5. Coffman, B.: Weak signal research, part I: Introduction. J. Trans. Manag. 2(1) (1997)

    Google Scholar 

  6. Corcoran, W.R.: Defining and analyzing precursors. In: Accident precursor analysis and management: Reducing technological risk through diligence, pp. 79–88. National Academy Press Washington, DC (2004)

    Google Scholar 

  7. Davies, T., Marchione, E.: Event networks and the identification of crime pattern motifs. PloS one 10(11), e0143638 (2015)

    Google Scholar 

  8. Godet, M.: From anticipation to action: a handbook of strategic prospective. UNESCO publishing (1994)

    Google Scholar 

  9. Goldin, D.Q., Kanellakis, P.C.: On similarity queries for time-series data: constraint specification and implementation. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 137–153. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60299-2_9

    Chapter  Google Scholar 

  10. Hiltunen, E.: Weak Signals in Organisational Futures. Aalto University School of Economics, Aalto (2010)

    Google Scholar 

  11. Hočevar, T., Demšar, J.: A combinatorial approach to Graphlet counting. Bioinf. 30(4), 559–565 (2014). https://doi.org/10.1093/bioinformatics/btt717

  12. Hulovatyy, Y., Chen, H., Milenković, T.: Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics 31(12), i171–i180 (2015)

    Article  Google Scholar 

  13. Juszczyszyn, K., Kołaczek, G.: Motif-based attack detection in network communication graphs. In: De Decker, B., Lapon, J., Naessens, V., Uhl, A. (eds.) CMS 2011. LNCS, vol. 7025, pp. 206–213. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24712-5_19

    Chapter  Google Scholar 

  14. Krigsholm, R.: Applying text mining for identifying future signals of land administration. Land 8(12), 181 (2019). https://doi.org/10.3390/land8120181

  15. Maitre, J., Ménard, M., Chiron, G., Bouju, A., Sidère, N.: A meaningful information extraction system for interactive analysis of documents. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 92–99. IEEE (2019)

    Google Scholar 

  16. Moreira, A.L.M., Hayashi, T.W.N., Coelho, G.P., da Silva, A.E.A.: A clustering method for weak signals to support anticipative intelligence. Int. J. Artif. Intell. Expert Syst. (IJAE) 6(1), 1–14 (2015)

    Google Scholar 

  17. Ning, Y., Muthiah, S., Rangwala, H., Ramakrishnan, N.: Modeling precursors for event forecasting via nested multi-instance learning. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1095–1104 (2016)

    Google Scholar 

  18. Pržulj, N.: Biological network comparison using GraphLet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    Google Scholar 

  19. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinform. 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  20. Ray, S., McEvoy, D.S., Aaron, S., Hickman, T.T., Wright, A.: Using statistical anomaly detection models to find clinical decision support malfunctions. J. Am. Med. Inform. Assoc. 25(7), 862–871 (2018)

    Article  Google Scholar 

  21. Ribeiro, P., Paredes, P., Silva, M.E., Aparicio, D., Silva, F.: A survey on subgraph counting: concepts, algorithms and applications to network motifs and graphlets. arXiv preprint arXiv:1910.13011 (2019)

  22. Ripley, B.D., Venables, W.: Modern applied statistics with S. Springer (2002)

    Google Scholar 

  23. Welz, K., Brecht, L., Pengl, A., Kauffeldt, J.V., Schallmo, D.R.: Weak signals detection: criteria for social media monitoring tools. In: ISPIM Innovation Symposium, p. 1. The International Society for Professional Innovation Management (ISPIM) (2012)

    Google Scholar 

  24. Yoon, J.: Detecting weak signals for long-term business opportunities using text mining of web news. Expert Syst. Appl. 39(16), 12543–12550 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the program “Investissements d’Avenir”, ISITE-BFC project (ANR contract 15-IDEX-0003), https://projet-cocktail.fr/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba Abou Jamra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

�� 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abou Jamra, H., Savonnet, M., Leclercq, É. (2021). Detection of Event Precursors in Social Networks: A Graphlet-Based Method. In: Cherfi, S., Perini, A., Nurcan, S. (eds) Research Challenges in Information Science. RCIS 2021. Lecture Notes in Business Information Processing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-030-75018-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75018-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75017-6

  • Online ISBN: 978-3-030-75018-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics