Skip to main content

Drawing Shortest Paths in Geodetic Graphs

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Abstract

Motivated by the fact that in a space where shortest paths are unique, no two shortest paths meet twice, we study a question posed by Greg Bodwin: Given a geodetic graph G, i.e., an unweighted graph in which the shortest path between any pair of vertices is unique, is there a philogeodetic drawing of G, i.e., a drawing of G in which the curves of any two shortest paths meet at most once? We answer this question in the negative by showing the existence of geodetic graphs that require some pair of shortest paths to cross at least four times. The bound on the number of crossings is tight for the class of graphs we construct. Furthermore, we exhibit geodetic graphs of diameter two that do not admit a philogeodetic drawing.

This research began at the Graph and Network Visualization Workshop 2019 (GNV’19) in Heiligkreuztal. S. C. is funded by the German Research Foundation DFG – Project-ID 50974019 – TRR 161 (B06). M. H. is supported by the Swiss National Science Foundation within the collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681. S. K. is supported by NSF grants CCF-1740858, CCF-1712119, and DMS-1839274.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodwin, G.: On the structure of unique shortest paths in graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pp. 2071–2089. SIAM (2019). https://doi.org/10.1137/1.9781611975482.125

  2. Frasser, C.E., Vostrov, G.N.: Geodetic graphs homeomorphic to a given geodetic graph. CoRR abs/1611.01873 (2016). http://arxiv.org/abs/1611.01873

  3. Hoffman, A.J., Singleton, R.R.: Moore graphs with diameter 2 and 3. IBM J. Res. Dev. 5(4), 497–504 (1960). https://doi.org/10.1147/rd.45.0497

    Article  MathSciNet  MATH  Google Scholar 

  4. Hughes, D.R., Piper, F.C.: Projective Planes, Graduate Texts in Mathematics, vol. 6. Springer, New York (1973)

    Google Scholar 

  5. Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954). https://doi.org/10.4064/cm-3-1-50-57

    Article  MATH  Google Scholar 

  6. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers. Networks 14, 393–410 (1984). https://doi.org/10.1002/net.3230140304

    Article  MathSciNet  MATH  Google Scholar 

  7. Ore, Ø.: Theory of Graphs, Colloquium Publications, vol. 38. American Mathematical Society, Providence, RI (1962). https://doi.org/10.1090/coll/038

  8. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000). https://doi.org/10.1006/jctb.2000.1978

    Article  MathSciNet  MATH  Google Scholar 

  9. Parthasarathy, K.R., Srinivasan, N.: Some general constructions of geodetic blocks. J. Combin. Theory Ser. B 33(2), 121–136 (1982). https://doi.org/10.1016/0095-8956(82)90063-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Plesník, J.: Two constructions of geodetic graphs. Math. Slovaca 27(1), 65–71 (1977). https://dml.cz/handle/10338.dmlcz/136134

    MathSciNet  MATH  Google Scholar 

  11. Plesník, J.: A construction of geodetic graphs based on pulling subgraphs homeomorphic to complete graphs. J. Combin. Theory Ser. B 36(3), 284–297 (1984). https://doi.org/10.1016/0095-8956(84)90034-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Scapellato, R.: Geodetic graphs of diameter two and some related structures. J. Combin. Theory Ser. B 41(2), 218–229 (1986). https://doi.org/10.1016/0095-8956(86)90045-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Stemple, J.G.: Geodetic graphs homeomorphic to a complete graph. Ann. N. Y. Acad. Sci. 319(1), 512–517 (1979). https://doi.org/10.1111/j.1749-6632.1979.tb32829.x

    Article  MathSciNet  MATH  Google Scholar 

  14. Stemple, J.G., Watkins, M.E.: On planar geodetic graphs. J. Comb. Theory Ser. B 4(2), 101–117 (1968). https://doi.org/10.1016/S0021-9800(68)80035-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Watkins, M.E.: A characterization of planar geodetic graphs. J. Comb. Theory 2(1), 102–103 (1967). https://doi.org/10.1016/S0021-9800(67)80118-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Cornelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cornelsen, S. et al. (2020). Drawing Shortest Paths in Geodetic Graphs. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics