Skip to main content

Augmented Radiology: Patient-Wise Feature Transfer Model for Glioma Grading

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (DART 2020, DCL 2020)

Abstract

In current oncological workflows of clinical decision making and treatment management, biopsy is the only way to confirm the abnormality of cancer. On the purpose of reducing unnecessary biopsies and diagnostic burden, we propose a patient-wise feature transfer model for learning the relationship of phenotypes between radiological images and pathological images. We hypothesize that high-level features from the same patient are possible to be linked between modalities of different image scales. We integrate multiple feature transfer blocks between CNN-based networks with single-/multi-modality radiological images and pathological images in an end-to-end training framework. We refer to our method as “augmented radiology” because the inference model only requires radiological images as input while the prediction result can be linked to specific pathological phenotypes. We apply the proposed method to glioma grading (high-grade vs. low-grade) and train the feature transfer model by using patient-wise multimodal MRI images and pathological images. Evaluation results show that the proposed method can achieve pathological tumor grading score in high accuracy (AUC 0.959) only given the radiological images as input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beig, N., et al.: Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma. Sci. Rep. 8(1), 1–11 (2018)

    Article  Google Scholar 

  2. Barbash, I.M., Waksman, R.: Current status, challenges and future directions of drug-eluting balloons. Future Cardiol. 7(6), 765–774 (2011)

    Article  Google Scholar 

  3. Cho, H.H., Lee, S.H., Kim, J., Park, H.: Classification of the glioma grading using radiomics analysis. PeerJ 6, e5982 (2018). https://doi.org/10.7717/peerj.5982

    Article  Google Scholar 

  4. Huang, P., et al.: CoCa-GAN: common-feature-learning-based context-aware generative adversarial network for glioma grading. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_18

    Chapter  Google Scholar 

  5. Liang, S., et al.: Multimodal 3D DenseNet for IDH genotype prediction in gliomas. Genes 9(8), 382 (2018)

    Article  Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R.: Deep learning in mammography and breast histology, an overview and future trends. Med. Image Anal. 47, 45–67 (2018)

    Article  Google Scholar 

  8. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  9. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  10. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  11. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  12. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  13. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110 (2009)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zisheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Ogino, M. (2020). Augmented Radiology: Patient-Wise Feature Transfer Model for Glioma Grading. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science(), vol 12444. Springer, Cham. https://doi.org/10.1007/978-3-030-60548-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60548-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60547-6

  • Online ISBN: 978-3-030-60548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics