Skip to main content

Endo-Sim2Real: Consistency Learning-Based Domain Adaptation for Instrument Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

Abstract

Surgical tool segmentation in endoscopic videos is an important component of computer assisted interventions systems. Recent success of image-based solutions using fully-supervised deep learning approaches can be attributed to the collection of big labeled datasets. However, the annotation of a big dataset of real videos can be prohibitively expensive and time consuming. Computer simulations could alleviate the manual labeling problem, however, models trained on simulated data do not generalize to real data. This work proposes a consistency-based framework for joint learning of simulated and real (unlabeled) endoscopic data to bridge this performance generalization issue. Empirical results on two data sets (15 videos of the Cholec80 and EndoVis’15 dataset) highlight the effectiveness of the proposed Endo-Sim2Real method for instrument segmentation. We compare the segmentation of the proposed approach with state-of-the-art solutions and show that our method improves segmentation both in terms of quality and quantity.

Funded by the German Federal Ministry of Education and Research (BMBF) under the project COMPASS (grant no. - 16 SV 8019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    EndoVis Sub-challenges - 2015, 2017, 2018 and 2019 (URL).

  2. 2.

    SAGES Innovation Weekend - Surgical Video Annotation Conference 2020.

  3. 3.

    Please note that the rendered and real data sets are unpaired and highly unrelated.

References

  1. Endovis sub-challenge: Instrument segmentation and tracking. https://endovissub-instrument.grand-challenge.org/ (2015)

  2. Attia, M., Hossny, M., Nahavandi, S., Asadi, H.: Surgical tool segmentation using a hybrid deep CNN-RNN auto encoder-decoder. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3373–3378. IEEE (2017)

    Google Scholar 

  3. Bachman, P., Alsharif, O., Precup, D.: Learning with pseudo-ensembles. In: Advances in Neural Information Processing Systems, pp. 3365–3373 (2014)

    Google Scholar 

  4. Becker, S., Hinton, G.E.: Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355(6356), 161–163 (1992)

    Article  Google Scholar 

  5. Bodenstedt, S., et al.: Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery. arXiv preprint arXiv:1805.02475 (2018)

  6. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  7. Fuentes-Hurtado, F., Kadkhodamohammadi, A., Flouty, E., Barbarisi, S., Luengo, I., Stoyanov, D.: Easylabels: weak labels for scene segmentation in laparoscopic videos. Int. J. Comput. Assist. Radiol. Surg. 14(7), 1–11 (2019). https://doi.org/10.1007/s11548-019-02003-2

  8. García-Peraza-Herrera, L.C., et al.: Toolnet: holistically-nested real-time segmentation of robotic surgical tools. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5717–5722. IEEE (2017)

    Google Scholar 

  9. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)

    Google Scholar 

  10. Islam, M., Atputharuban, D.A., Ramesh, R., Ren, H.: Real-time instrument segmentation in robotic surgery using auxiliary supervised deep adversarial learning. IEEE Robot. Autom. Lett. 4(2), 2188–2195 (2019)

    Article  Google Scholar 

  11. Islam, M., Li, Y., Ren, H.: Learning where to look while tracking instruments in robot-assisted surgery. MICCAI 2019. LNCS, vol. 11768, pp. 412–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_46

    Chapter  Google Scholar 

  12. Jin, Y., Cheng, K., Dou, Q., Heng, P.-A.: Incorporating temporal prior from motion flow for instrument segmentation in minimally invasive surgery Video. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 440–448. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_49

    Chapter  Google Scholar 

  13. Laina, I., et al.: Concurrent segmentation and localization for tracking of surgical instruments. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 664–672. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_75

    Chapter  Google Scholar 

  14. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Ni, Z.L., Bian, G.B., Xie, X.L., Hou, Z.G., Zhou, X.H., Zhou, Y.J.: Rasnet: segmentation for tracking surgical instruments in surgical videos using refined attention segmentation network. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5735–5738. IEEE (2019)

    Google Scholar 

  16. Ni, Z.-L., et al.: RAUNet: residual attention u-net for semantic segmentation of cataract surgical instruments. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11954, pp. 139–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36711-4_13

    Chapter  Google Scholar 

  17. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, pp. 3235–3246 (2018)

    Google Scholar 

  18. Pakhomov, D., Premachandran, V., Allan, M., Azizian, M., Navab, N.: Deep residual learning for instrument segmentation in robotic surgery. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 566–573. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_65

    Chapter  Google Scholar 

  19. Pfeiffer, M., et al.: Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image Translation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_14

    Chapter  Google Scholar 

  20. Qin, F., Li, Y., Su, Y.H., Xu, D., Hannaford, B.: Surgical instrument segmentation for endoscopic vision with data fusion of rediction and kinematic pose. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9821–9827. IEEE (2019)

    Google Scholar 

  21. Ross, T., et al.: Exploiting the potential of unlabeled endoscopic video data with self-supervised learning. Int. J. Comput. Assist. Radiol. Surg. 13(6), 925–933 (2018). https://doi.org/10.1007/s11548-018-1772-0

    Article  Google Scholar 

  22. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  23. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 1163–1171 (2016)

    Google Scholar 

  24. Shvets, A.A., Rakhlin, A., Kalinin, A.A., Iglovikov, V.I.: Automatic instrument segmentation in robot-assisted surgery using deep learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 624–628. IEEE (2018)

    Google Scholar 

  25. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: Computer Vision and Pattern Recognition, pp. 1521–1528. IEEE (2011)

    Google Scholar 

  26. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sahu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1763 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, M., Strömsdörfer, R., Mukhopadhyay, A., Zachow, S. (2020). Endo-Sim2Real: Consistency Learning-Based Domain Adaptation for Instrument Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics