Skip to main content

Vector Relative Degree and Funnel Control for Differential-Algebraic Systems

  • Conference paper
  • First Online:
Progress in Differential-Algebraic Equations II

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

We consider tracking control for multi-input multi-output differential-algebraic systems. First, the concept of vector relative degree is generalized for linear systems and we arrive at the novel concept of “truncated vector relative degree”, and we derive a new normal form. Thereafter, we consider a class of nonlinear functional differential-algebraic systems which comprises linear systems with truncated vector relative degree. For this class we introduce a feedback controller which achieves that, for a given sufficiently smooth reference signal, the tracking error evolves within a pre-specified performance funnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [21] a domain \(\mathcal {D}\subseteq {\mathbb {R}}_{\ge 0}\times {\mathbb {R}}\) is considered, but the generalization to the higher dimensional case is straightforward.

References

  1. Berger, T.: On differential-algebraic control systems. Ph.D. Thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau (2014). http://www.db-thueringen.de/servlets/DocumentServlet?id=22652

  2. Berger, T.: Zero dynamics and stabilization for linear DAEs. In: Schöps, S., Bartel, A., Günther, M., ter Maten, E.J.W., Müller, P.C. (eds.) Progress in Differential-Algebraic Equations. Differential-Algebraic Equations Forum, pp. 21–45. Springer, Berlin (2014)

    Google Scholar 

  3. Berger, T.: Zero dynamics and funnel control of general linear differential-algebraic systems. ESAIM Control Optim. Calc. Var. 22(2), 371–403 (2016)

    Article  MathSciNet  Google Scholar 

  4. Berger, T., Rauert, A.L.: A universal model-free and safe adaptive cruise control mechanism. In: Proceedings of the MTNS 2018, pp. 925–932. Hong Kong (2018)

    Google Scholar 

  5. Berger, T., Reis, T.: Zero dynamics and funnel control for linear electrical circuits. J. Franklin Inst. 351(11), 5099–5132 (2014)

    Article  MathSciNet  Google Scholar 

  6. Berger, T., Ilchmann, A., Reis, T.: Zero dynamics and funnel control of linear differential-algebraic systems. Math. Control Signals Syst. 24(3), 219–263 (2012)

    Article  MathSciNet  Google Scholar 

  7. Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils. Linear Algebra Appl. 436(10), 4052–4069 (2012). https://doi.org/10.1016/j.laa.2009.12.036

    Article  MathSciNet  Google Scholar 

  8. Berger, T., Ilchmann, A., Reis, T.: Funnel control for nonlinear functional differential-algebraic systems. In: Proceedings of the MTNS 2014, pp. 46–53. Groningen (2014)

    Google Scholar 

  9. Berger, T., Lê, H.H., Reis, T.: Funnel control for nonlinear systems with known strict relative degree. Automatica 87, 345–357 (2018). https://doi.org/10.1016/j.automatica.2017.10.017

    Article  MathSciNet  Google Scholar 

  10. Berger, T., Otto, S., Reis, T., Seifried, R.: Combined open-loop and funnel control for underactuated multibody systems. Nonlinear Dynam. 95, 1977–1998 (2019). https://doi.org/10.1007/s11071-018-4672-5

    Article  Google Scholar 

  11. Byrnes, C.I., Isidori, A.: A frequency domain philosophy for nonlinear systems, with application to stabilization and to adaptive control. In: Proceedings of the 23rd IEEE Conference on Decision and Control, vol. 1, pp. 1569–1573 (1984)

    Google Scholar 

  12. Byrnes, C.I., Isidori, A.: Global feedback stabilization of nonlinear systems. In: Proceedings of the 24th IEEE Conference on Decision and Control, Ft. Lauderdale, vol. 1, pp. 1031–1037 (1985)

    Google Scholar 

  13. Byrnes, C.I., Isidori, A.: Local stabilization of minimum-phase nonlinear systems. Syst. Control Lett. 11(1), 9–17 (1988)

    Article  MathSciNet  Google Scholar 

  14. Byrnes, C.I., Isidori, A.: New results and examples in nonlinear feedback stabilization. Syst. Control Lett. 12(5), 437–442 (1989)

    Article  MathSciNet  Google Scholar 

  15. Fuhrmann, P.A., Helmke, U.: The Mathematics of Networks of Linear Systems. Springer, New York (2015)

    Book  Google Scholar 

  16. Hackl, C.M.: Non-identifier Based Adaptive Control in Mechatronics–Theory and Application. Lecture Notes in Control and Information Sciences, vol. 466. Springer, Cham (2017)

    Google Scholar 

  17. Hackl, C.M., Hopfe, N., Ilchmann, A., Mueller, M., Trenn, S.: Funnel control for systems with relative degree two. SIAM J. Control Optim. 51(2), 965–995 (2013)

    Article  MathSciNet  Google Scholar 

  18. Ilchmann, A.: Decentralized tracking of interconnected systems. In: Hüper, K., Trumpf, J. (eds.) Mathematical System Theory - Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pp. 229–245. CreateSpace, South Carolina (2013)

    Google Scholar 

  19. Ilchmann, A., Ryan, E.P.: Universal λ-tracking for nonlinearly-perturbed systems in the presence of noise. Automatica 30(2), 337–346 (1994)

    Article  MathSciNet  Google Scholar 

  20. Ilchmann, A., Ryan, E.P.: High-gain control without identification: a survey. GAMM Mitt. 31(1), 115–125 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ilchmann, A., Ryan, E.P.: Performance funnels and tracking control. Int. J. Control 82(10), 1828–1840 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ilchmann, A., Townley, S.B.: Simple adaptive stabilization of high-gain stabilizable systems. Syst. Control Lett. 20(3), 189–198 (1993)

    Article  MathSciNet  Google Scholar 

  23. Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM Control Optim Calc Var 7, 471–493 (2002)

    Article  MathSciNet  Google Scholar 

  24. Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering Series, 3rd edn. Springer, Berlin (1995)

    Google Scholar 

  25. Lê, H.H.: Funnel control for systems with known vector relative degree. Ph.D. Thesis, Universität Hamburg, Hamburg (2019). https://ediss.sub.uni-hamburg.de/volltexte/2019/9711/pdf/Dissertation.pdf

  26. Liberzon, D., Trenn, S.: The bang-bang funnel controller for uncertain nonlinear systems with arbitrary relative degree. IEEE Trans. Autom. Control 58(12), 3126–3141 (2013)

    Article  MathSciNet  Google Scholar 

  27. Mueller, M.: Normal form for linear systems with respect to its vector relative degree. Linear Algebra Appl. 430(4), 1292–1312 (2009)

    Article  MathSciNet  Google Scholar 

  28. Nicosia, S., Tornambè, A.: High-gain observers in the state and parameter estimation of robots having elastic joints. Syst. Control Lett. 13(4), 331–337 (1989)

    Article  MathSciNet  Google Scholar 

  29. Senfelds, A., Paugurs, A.: Electrical drive DC link power flow control with adaptive approach. In: Proceedings of the 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, Latvia, pp. 30–33 (2014)

    Google Scholar 

  30. Trentelman, H.L., Stoorvogel, A.A., Hautus, M.L.J.: Control Theory for Linear Systems. Communications and Control Engineering. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0339-4

Download references

Acknowledgement

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) via the grant BE 6263/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berger, T., Lê, H.H., Reis, T. (2020). Vector Relative Degree and Funnel Control for Differential-Algebraic Systems. In: Reis, T., Grundel, S., Schöps, S. (eds) Progress in Differential-Algebraic Equations II. Differential-Algebraic Equations Forum. Springer, Cham. https://doi.org/10.1007/978-3-030-53905-4_8

Download citation

Publish with us

Policies and ethics